123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678 |
- <?php
- /**
- * Pure-PHP arbitrary precision integer arithmetic library.
- *
- * Supports base-2, base-10, base-16, and base-256 numbers. Uses the GMP or BCMath extensions, if available,
- * and an internal implementation, otherwise.
- *
- * PHP version 5
- *
- * {@internal (all DocBlock comments regarding implementation - such as the one that follows - refer to the
- * {@link self::MODE_INTERNAL self::MODE_INTERNAL} mode)
- *
- * BigInteger uses base-2**26 to perform operations such as multiplication and division and
- * base-2**52 (ie. two base 2**26 digits) to perform addition and subtraction. Because the largest possible
- * value when multiplying two base-2**26 numbers together is a base-2**52 number, double precision floating
- * point numbers - numbers that should be supported on most hardware and whose significand is 53 bits - are
- * used. As a consequence, bitwise operators such as >> and << cannot be used, nor can the modulo operator %,
- * which only supports integers. Although this fact will slow this library down, the fact that such a high
- * base is being used should more than compensate.
- *
- * Numbers are stored in {@link http://en.wikipedia.org/wiki/Endianness little endian} format. ie.
- * (new \phpseclib\Math\BigInteger(pow(2, 26)))->value = array(0, 1)
- *
- * Useful resources are as follows:
- *
- * - {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf Handbook of Applied Cryptography (HAC)}
- * - {@link http://math.libtomcrypt.com/files/tommath.pdf Multi-Precision Math (MPM)}
- * - Java's BigInteger classes. See /j2se/src/share/classes/java/math in jdk-1_5_0-src-jrl.zip
- *
- * Here's an example of how to use this library:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger(2);
- * $b = new \phpseclib\Math\BigInteger(3);
- *
- * $c = $a->add($b);
- *
- * echo $c->toString(); // outputs 5
- * ?>
- * </code>
- *
- * @category Math
- * @package BigInteger
- * @author Jim Wigginton <terrafrost@php.net>
- * @copyright 2006 Jim Wigginton
- * @license http://www.opensource.org/licenses/mit-license.html MIT License
- * @link http://pear.php.net/package/Math_BigInteger
- */
- namespace phpseclib\Math;
- use ParagonIE\ConstantTime\Base64;
- use ParagonIE\ConstantTime\Hex;
- use phpseclib\Crypt\Random;
- /**
- * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256
- * numbers.
- *
- * @package BigInteger
- * @author Jim Wigginton <terrafrost@php.net>
- * @access public
- */
- class BigInteger
- {
- /**#@+
- * Reduction constants
- *
- * @access private
- * @see BigInteger::_reduce()
- */
- /**
- * @see BigInteger::_montgomery()
- * @see BigInteger::_prepMontgomery()
- */
- const MONTGOMERY = 0;
- /**
- * @see BigInteger::_barrett()
- */
- const BARRETT = 1;
- /**
- * @see BigInteger::_mod2()
- */
- const POWEROF2 = 2;
- /**
- * @see BigInteger::_remainder()
- */
- const CLASSIC = 3;
- /**
- * @see BigInteger::__clone()
- */
- const NONE = 4;
- /**#@-*/
- /**#@+
- * Array constants
- *
- * Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and
- * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them.
- *
- * @access private
- */
- /**
- * $result[self::VALUE] contains the value.
- */
- const VALUE = 0;
- /**
- * $result[self::SIGN] contains the sign.
- */
- const SIGN = 1;
- /**#@-*/
- /**#@+
- * @access private
- * @see BigInteger::_montgomery()
- * @see BigInteger::_barrett()
- */
- /**
- * Cache constants
- *
- * $cache[self::VARIABLE] tells us whether or not the cached data is still valid.
- */
- const VARIABLE = 0;
- /**
- * $cache[self::DATA] contains the cached data.
- */
- const DATA = 1;
- /**#@-*/
- /**#@+
- * Mode constants.
- *
- * @access private
- * @see BigInteger::__construct()
- */
- /**
- * To use the pure-PHP implementation
- */
- const MODE_INTERNAL = 1;
- /**
- * To use the BCMath library
- *
- * (if enabled; otherwise, the internal implementation will be used)
- */
- const MODE_BCMATH = 2;
- /**
- * To use the GMP library
- *
- * (if present; otherwise, either the BCMath or the internal implementation will be used)
- */
- const MODE_GMP = 3;
- /**#@-*/
- /**
- * Karatsuba Cutoff
- *
- * At what point do we switch between Karatsuba multiplication and schoolbook long multiplication?
- *
- * @access private
- */
- const KARATSUBA_CUTOFF = 25;
- /**#@+
- * Static properties used by the pure-PHP implementation.
- *
- * @see __construct()
- */
- protected static $base;
- protected static $baseFull;
- protected static $maxDigit;
- protected static $msb;
- /**
- * $max10 in greatest $max10Len satisfying
- * $max10 = 10**$max10Len <= 2**$base.
- */
- protected static $max10;
- /**
- * $max10Len in greatest $max10Len satisfying
- * $max10 = 10**$max10Len <= 2**$base.
- */
- protected static $max10Len;
- protected static $maxDigit2;
- /**#@-*/
- /**
- * Holds the BigInteger's value.
- *
- * @var array
- * @access private
- */
- var $value;
- /**
- * Holds the BigInteger's magnitude.
- *
- * @var bool
- * @access private
- */
- var $is_negative = false;
- /**
- * Precision
- *
- * @see self::setPrecision()
- * @access private
- */
- var $precision = -1;
- /**
- * Precision Bitmask
- *
- * @see self::setPrecision()
- * @access private
- */
- var $bitmask = false;
- /**
- * Mode independent value used for serialization.
- *
- * If the bcmath or gmp extensions are installed $this->value will be a non-serializable resource, hence the need for
- * a variable that'll be serializable regardless of whether or not extensions are being used. Unlike $this->value,
- * however, $this->hex is only calculated when $this->__sleep() is called.
- *
- * @see self::__sleep()
- * @see self::__wakeup()
- * @var string
- * @access private
- */
- var $hex;
- /**
- * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers.
- *
- * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
- * two's compliment. The sole exception to this is -10, which is treated the same as 10 is.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('0x32', 16); // 50 in base-16
- *
- * echo $a->toString(); // outputs 50
- * ?>
- * </code>
- *
- * @param $x base-10 number or base-$base number if $base set.
- * @param int $base
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function __construct($x = 0, $base = 10)
- {
- if (!defined('MATH_BIGINTEGER_MODE')) {
- switch (true) {
- case extension_loaded('gmp'):
- define('MATH_BIGINTEGER_MODE', self::MODE_GMP);
- break;
- case extension_loaded('bcmath'):
- define('MATH_BIGINTEGER_MODE', self::MODE_BCMATH);
- break;
- default:
- define('MATH_BIGINTEGER_MODE', self::MODE_INTERNAL);
- }
- }
- if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
- define('MATH_BIGINTEGER_OPENSSL_ENABLED', true);
- }
- if (!defined('PHP_INT_SIZE')) {
- define('PHP_INT_SIZE', 4);
- }
- if (empty(self::$base) && MATH_BIGINTEGER_MODE == self::MODE_INTERNAL) {
- switch (PHP_INT_SIZE) {
- case 8: // use 64-bit integers if int size is 8 bytes
- self::$base = 31;
- self::$baseFull = 0x80000000;
- self::$maxDigit = 0x7FFFFFFF;
- self::$msb = 0x40000000;
- self::$max10 = 1000000000;
- self::$max10Len = 9;
- self::$maxDigit2 = pow(2, 62);
- break;
- //case 4: // use 64-bit floats if int size is 4 bytes
- default:
- self::$base = 26;
- self::$baseFull = 0x4000000;
- self::$maxDigit = 0x3FFFFFF;
- self::$msb = 0x2000000;
- self::$max10 = 10000000;
- self::$max10Len = 7;
- self::$maxDigit2 = pow(2, 52); // pow() prevents truncation
- }
- }
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- switch (true) {
- case is_resource($x) && get_resource_type($x) == 'GMP integer':
- // PHP 5.6 switched GMP from using resources to objects
- case $x instanceof \GMP:
- $this->value = $x;
- return;
- }
- $this->value = gmp_init(0);
- break;
- case self::MODE_BCMATH:
- $this->value = '0';
- break;
- default:
- $this->value = array();
- }
- // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48
- // '0' is the only value like this per http://php.net/empty
- if (empty($x) && (abs($base) != 256 || $x !== '0')) {
- return;
- }
- switch ($base) {
- case -256:
- if (ord($x[0]) & 0x80) {
- $x = ~$x;
- $this->is_negative = true;
- }
- case 256:
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $sign = $this->is_negative ? '-' : '';
- $this->value = gmp_init($sign . '0x' . Hex::encode($x));
- break;
- case self::MODE_BCMATH:
- // round $len to the nearest 4 (thanks, DavidMJ!)
- $len = (strlen($x) + 3) & 0xFFFFFFFC;
- $x = str_pad($x, $len, chr(0), STR_PAD_LEFT);
- for ($i = 0; $i < $len; $i+= 4) {
- $this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32
- $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])), 0);
- }
- if ($this->is_negative) {
- $this->value = '-' . $this->value;
- }
- break;
- // converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb)
- default:
- while (strlen($x)) {
- $this->value[] = $this->_bytes2int($this->_base256_rshift($x, self::$base));
- }
- }
- if ($this->is_negative) {
- if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) {
- $this->is_negative = false;
- }
- $temp = $this->add(new static('-1'));
- $this->value = $temp->value;
- }
- break;
- case 16:
- case -16:
- if ($base > 0 && $x[0] == '-') {
- $this->is_negative = true;
- $x = substr($x, 1);
- }
- $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);
- $is_negative = false;
- if ($base < 0 && hexdec($x[0]) >= 8) {
- $this->is_negative = $is_negative = true;
- $x = Hex::encode(~Hex::decode($x));
- }
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
- $this->value = gmp_init($temp);
- $this->is_negative = false;
- break;
- case self::MODE_BCMATH:
- $x = (strlen($x) & 1) ? '0' . $x : $x;
- $temp = new static(Hex::decode($x), 256);
- $this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
- $this->is_negative = false;
- break;
- default:
- $x = (strlen($x) & 1) ? '0' . $x : $x;
- $temp = new static(Hex::decode($x), 256);
- $this->value = $temp->value;
- }
- if ($is_negative) {
- $temp = $this->add(new static('-1'));
- $this->value = $temp->value;
- }
- break;
- case 10:
- case -10:
- // (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that
- // (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals)
- // [^-0-9].*: find any non-numeric characters and then any characters that follow that
- $x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x);
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $this->value = gmp_init($x);
- break;
- case self::MODE_BCMATH:
- // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
- // results then doing it on '-1' does (modInverse does $x[0])
- $this->value = $x === '-' ? '0' : (string) $x;
- break;
- default:
- $temp = new static();
- $multiplier = new static();
- $multiplier->value = array(self::$max10);
- if ($x[0] == '-') {
- $this->is_negative = true;
- $x = substr($x, 1);
- }
- $x = str_pad($x, strlen($x) + ((self::$max10Len - 1) * strlen($x)) % self::$max10Len, 0, STR_PAD_LEFT);
- while (strlen($x)) {
- $temp = $temp->multiply($multiplier);
- $temp = $temp->add(new static($this->_int2bytes(substr($x, 0, self::$max10Len)), 256));
- $x = substr($x, self::$max10Len);
- }
- $this->value = $temp->value;
- }
- break;
- case 2: // base-2 support originally implemented by Lluis Pamies - thanks!
- case -2:
- if ($base > 0 && $x[0] == '-') {
- $this->is_negative = true;
- $x = substr($x, 1);
- }
- $x = preg_replace('#^([01]*).*#', '$1', $x);
- $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT);
- $str = '0x';
- while (strlen($x)) {
- $part = substr($x, 0, 4);
- $str.= dechex(bindec($part));
- $x = substr($x, 4);
- }
- if ($this->is_negative) {
- $str = '-' . $str;
- }
- $temp = new static($str, 8 * $base); // ie. either -16 or +16
- $this->value = $temp->value;
- $this->is_negative = $temp->is_negative;
- break;
- default:
- // base not supported, so we'll let $this == 0
- }
- }
- /**
- * Converts a BigInteger to a byte string (eg. base-256).
- *
- * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
- * saved as two's compliment.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('65');
- *
- * echo $a->toBytes(); // outputs chr(65)
- * ?>
- * </code>
- *
- * @param bool $twos_compliment
- * @return string
- * @access public
- * @internal Converts a base-2**26 number to base-2**8
- */
- function toBytes($twos_compliment = false)
- {
- if ($twos_compliment) {
- $comparison = $this->compare(new static());
- if ($comparison == 0) {
- return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
- }
- $temp = $comparison < 0 ? $this->add(new static(1)) : $this;
- $bytes = $temp->toBytes();
- if (empty($bytes)) { // eg. if the number we're trying to convert is -1
- $bytes = chr(0);
- }
- if (ord($bytes[0]) & 0x80) {
- $bytes = chr(0) . $bytes;
- }
- return $comparison < 0 ? ~$bytes : $bytes;
- }
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- if (gmp_cmp($this->value, gmp_init(0)) == 0) {
- return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
- }
- $temp = gmp_strval(gmp_abs($this->value), 16);
- $temp = (strlen($temp) & 1) ? '0' . $temp : $temp;
- $temp = Hex::decode($temp);
- return $this->precision > 0 ?
- substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
- ltrim($temp, chr(0));
- case self::MODE_BCMATH:
- if ($this->value === '0') {
- return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
- }
- $value = '';
- $current = $this->value;
- if ($current[0] == '-') {
- $current = substr($current, 1);
- }
- while (bccomp($current, '0', 0) > 0) {
- $temp = bcmod($current, '16777216');
- $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
- $current = bcdiv($current, '16777216', 0);
- }
- return $this->precision > 0 ?
- substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
- ltrim($value, chr(0));
- }
- if (!count($this->value)) {
- return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
- }
- $result = self::_int2bytes($this->value[count($this->value) - 1]);
- for ($i = count($this->value) - 2; $i >= 0; --$i) {
- self::_base256_lshift($result, self::$base);
- $result = $result | str_pad(self::_int2bytes($this->value[$i]), strlen($result), chr(0), STR_PAD_LEFT);
- }
- return $this->precision > 0 ?
- str_pad(substr($result, -(($this->precision + 7) >> 3)), ($this->precision + 7) >> 3, chr(0), STR_PAD_LEFT) :
- $result;
- }
- /**
- * Converts a BigInteger to a hex string (eg. base-16)).
- *
- * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
- * saved as two's compliment.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('65');
- *
- * echo $a->toHex(); // outputs '41'
- * ?>
- * </code>
- *
- * @param bool $twos_compliment
- * @return string
- * @access public
- * @internal Converts a base-2**26 number to base-2**8
- */
- function toHex($twos_compliment = false)
- {
- return Hex::encode($this->toBytes($twos_compliment));
- }
- /**
- * Converts a BigInteger to a bit string (eg. base-2).
- *
- * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
- * saved as two's compliment.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('65');
- *
- * echo $a->toBits(); // outputs '1000001'
- * ?>
- * </code>
- *
- * @param bool $twos_compliment
- * @return string
- * @access public
- * @internal Converts a base-2**26 number to base-2**2
- */
- function toBits($twos_compliment = false)
- {
- $hex = $this->toHex($twos_compliment);
- $bits = '';
- for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i-=8) {
- $bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT) . $bits;
- }
- if ($start) { // hexdec('') == 0
- $bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT) . $bits;
- }
- $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0');
- if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) {
- return '0' . $result;
- }
- return $result;
- }
- /**
- * Converts a BigInteger to a base-10 number.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('50');
- *
- * echo $a->toString(); // outputs 50
- * ?>
- * </code>
- *
- * @return string
- * @access public
- * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10)
- */
- function toString()
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- return gmp_strval($this->value);
- case self::MODE_BCMATH:
- if ($this->value === '0') {
- return '0';
- }
- return ltrim($this->value, '0');
- }
- if (!count($this->value)) {
- return '0';
- }
- $temp = clone $this;
- $temp->is_negative = false;
- $divisor = new static();
- $divisor->value = array(self::$max10);
- $result = '';
- while (count($temp->value)) {
- list($temp, $mod) = $temp->divide($divisor);
- $result = str_pad(isset($mod->value[0]) ? $mod->value[0] : '', self::$max10Len, '0', STR_PAD_LEFT) . $result;
- }
- $result = ltrim($result, '0');
- if (empty($result)) {
- $result = '0';
- }
- if ($this->is_negative) {
- $result = '-' . $result;
- }
- return $result;
- }
- /**
- * __toString() magic method
- *
- * Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call
- * toString().
- *
- * @access public
- * @internal Implemented per a suggestion by Techie-Michael - thanks!
- */
- function __toString()
- {
- return $this->toString();
- }
- /**
- * __sleep() magic method
- *
- * Will be called, automatically, when serialize() is called on a BigInteger object.
- *
- * @see self::__wakeup()
- * @access public
- */
- function __sleep()
- {
- $this->hex = $this->toHex(true);
- $vars = array('hex');
- if ($this->precision > 0) {
- $vars[] = 'precision';
- }
- return $vars;
- }
- /**
- * __wakeup() magic method
- *
- * Will be called, automatically, when unserialize() is called on a BigInteger object.
- *
- * @see self::__sleep()
- * @access public
- */
- function __wakeup()
- {
- $temp = new static($this->hex, -16);
- $this->value = $temp->value;
- $this->is_negative = $temp->is_negative;
- if ($this->precision > 0) {
- // recalculate $this->bitmask
- $this->setPrecision($this->precision);
- }
- }
- /**
- * __debugInfo() magic method
- *
- * Will be called, automatically, when print_r() or var_dump() are called
- *
- * @access public
- */
- function __debugInfo()
- {
- $opts = array();
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $engine = 'gmp';
- break;
- case self::MODE_BCMATH:
- $engine = 'bcmath';
- break;
- case self::MODE_INTERNAL:
- $engine = 'internal';
- $opts[] = PHP_INT_SIZE == 8 ? '64-bit' : '32-bit';
- }
- if (MATH_BIGINTEGER_MODE != self::MODE_GMP && defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
- $opts[] = 'OpenSSL';
- }
- if (!empty($opts)) {
- $engine.= ' (' . implode($opts, ', ') . ')';
- }
- return array(
- 'value' => '0x' . $this->toHex(true),
- 'engine' => $engine
- );
- }
- /**
- * Adds two BigIntegers.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('10');
- * $b = new \phpseclib\Math\BigInteger('20');
- *
- * $c = $a->add($b);
- *
- * echo $c->toString(); // outputs 30
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $y
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal Performs base-2**52 addition
- */
- function add(BigInteger $y)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_add($this->value, $y->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $temp = new static();
- $temp->value = bcadd($this->value, $y->value, 0);
- return $this->_normalize($temp);
- }
- $temp = self::_add($this->value, $this->is_negative, $y->value, $y->is_negative);
- $result = new static();
- $result->value = $temp[self::VALUE];
- $result->is_negative = $temp[self::SIGN];
- return $this->_normalize($result);
- }
- /**
- * Performs addition.
- *
- * @param array $x_value
- * @param bool $x_negative
- * @param array $y_value
- * @param bool $y_negative
- * @return array
- * @access private
- */
- static function _add($x_value, $x_negative, $y_value, $y_negative)
- {
- $x_size = count($x_value);
- $y_size = count($y_value);
- if ($x_size == 0) {
- return array(
- self::VALUE => $y_value,
- self::SIGN => $y_negative
- );
- } elseif ($y_size == 0) {
- return array(
- self::VALUE => $x_value,
- self::SIGN => $x_negative
- );
- }
- // subtract, if appropriate
- if ($x_negative != $y_negative) {
- if ($x_value == $y_value) {
- return array(
- self::VALUE => array(),
- self::SIGN => false
- );
- }
- $temp = self::_subtract($x_value, false, $y_value, false);
- $temp[self::SIGN] = self::_compare($x_value, false, $y_value, false) > 0 ?
- $x_negative : $y_negative;
- return $temp;
- }
- if ($x_size < $y_size) {
- $size = $x_size;
- $value = $y_value;
- } else {
- $size = $y_size;
- $value = $x_value;
- }
- $value[count($value)] = 0; // just in case the carry adds an extra digit
- $carry = 0;
- for ($i = 0, $j = 1; $j < $size; $i+=2, $j+=2) {
- $sum = $x_value[$j] * self::$baseFull + $x_value[$i] + $y_value[$j] * self::$baseFull + $y_value[$i] + $carry;
- $carry = $sum >= self::$maxDigit2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
- $sum = $carry ? $sum - self::$maxDigit2 : $sum;
- $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31);
- $value[$i] = (int) ($sum - self::$baseFull * $temp); // eg. a faster alternative to fmod($sum, 0x4000000)
- $value[$j] = $temp;
- }
- if ($j == $size) { // ie. if $y_size is odd
- $sum = $x_value[$i] + $y_value[$i] + $carry;
- $carry = $sum >= self::$baseFull;
- $value[$i] = $carry ? $sum - self::$baseFull : $sum;
- ++$i; // ie. let $i = $j since we've just done $value[$i]
- }
- if ($carry) {
- for (; $value[$i] == self::$maxDigit; ++$i) {
- $value[$i] = 0;
- }
- ++$value[$i];
- }
- return array(
- self::VALUE => self::_trim($value),
- self::SIGN => $x_negative
- );
- }
- /**
- * Subtracts two BigIntegers.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('10');
- * $b = new \phpseclib\Math\BigInteger('20');
- *
- * $c = $a->subtract($b);
- *
- * echo $c->toString(); // outputs -10
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $y
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal Performs base-2**52 subtraction
- */
- function subtract(BigInteger $y)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_sub($this->value, $y->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $temp = new static();
- $temp->value = bcsub($this->value, $y->value, 0);
- return $this->_normalize($temp);
- }
- $temp = self::_subtract($this->value, $this->is_negative, $y->value, $y->is_negative);
- $result = new static();
- $result->value = $temp[self::VALUE];
- $result->is_negative = $temp[self::SIGN];
- return $this->_normalize($result);
- }
- /**
- * Performs subtraction.
- *
- * @param array $x_value
- * @param bool $x_negative
- * @param array $y_value
- * @param bool $y_negative
- * @return array
- * @access private
- */
- static function _subtract($x_value, $x_negative, $y_value, $y_negative)
- {
- $x_size = count($x_value);
- $y_size = count($y_value);
- if ($x_size == 0) {
- return array(
- self::VALUE => $y_value,
- self::SIGN => !$y_negative
- );
- } elseif ($y_size == 0) {
- return array(
- self::VALUE => $x_value,
- self::SIGN => $x_negative
- );
- }
- // add, if appropriate (ie. -$x - +$y or +$x - -$y)
- if ($x_negative != $y_negative) {
- $temp = self::_add($x_value, false, $y_value, false);
- $temp[self::SIGN] = $x_negative;
- return $temp;
- }
- $diff = self::_compare($x_value, $x_negative, $y_value, $y_negative);
- if (!$diff) {
- return array(
- self::VALUE => array(),
- self::SIGN => false
- );
- }
- // switch $x and $y around, if appropriate.
- if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) {
- $temp = $x_value;
- $x_value = $y_value;
- $y_value = $temp;
- $x_negative = !$x_negative;
- $x_size = count($x_value);
- $y_size = count($y_value);
- }
- // at this point, $x_value should be at least as big as - if not bigger than - $y_value
- $carry = 0;
- for ($i = 0, $j = 1; $j < $y_size; $i+=2, $j+=2) {
- $sum = $x_value[$j] * self::$baseFull + $x_value[$i] - $y_value[$j] * self::$baseFull - $y_value[$i] - $carry;
- $carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
- $sum = $carry ? $sum + self::$maxDigit2 : $sum;
- $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31);
- $x_value[$i] = (int) ($sum - self::$baseFull * $temp);
- $x_value[$j] = $temp;
- }
- if ($j == $y_size) { // ie. if $y_size is odd
- $sum = $x_value[$i] - $y_value[$i] - $carry;
- $carry = $sum < 0;
- $x_value[$i] = $carry ? $sum + self::$baseFull : $sum;
- ++$i;
- }
- if ($carry) {
- for (; !$x_value[$i]; ++$i) {
- $x_value[$i] = self::$maxDigit;
- }
- --$x_value[$i];
- }
- return array(
- self::VALUE => self::_trim($x_value),
- self::SIGN => $x_negative
- );
- }
- /**
- * Multiplies two BigIntegers
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('10');
- * $b = new \phpseclib\Math\BigInteger('20');
- *
- * $c = $a->multiply($b);
- *
- * echo $c->toString(); // outputs 200
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $x
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function multiply(BigInteger $x)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_mul($this->value, $x->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $temp = new static();
- $temp->value = bcmul($this->value, $x->value, 0);
- return $this->_normalize($temp);
- }
- $temp = self::_multiply($this->value, $this->is_negative, $x->value, $x->is_negative);
- $product = new static();
- $product->value = $temp[self::VALUE];
- $product->is_negative = $temp[self::SIGN];
- return $this->_normalize($product);
- }
- /**
- * Performs multiplication.
- *
- * @param array $x_value
- * @param bool $x_negative
- * @param array $y_value
- * @param bool $y_negative
- * @return array
- * @access private
- */
- static function _multiply($x_value, $x_negative, $y_value, $y_negative)
- {
- //if ( $x_value == $y_value ) {
- // return array(
- // self::VALUE => $this->_square($x_value),
- // self::SIGN => $x_sign != $y_value
- // );
- //}
- $x_length = count($x_value);
- $y_length = count($y_value);
- if (!$x_length || !$y_length) { // a 0 is being multiplied
- return array(
- self::VALUE => array(),
- self::SIGN => false
- );
- }
- return array(
- self::VALUE => min($x_length, $y_length) < 2 * self::KARATSUBA_CUTOFF ?
- self::_trim(self::_regularMultiply($x_value, $y_value)) :
- self::_trim(self::_karatsuba($x_value, $y_value)),
- self::SIGN => $x_negative != $y_negative
- );
- }
- /**
- * Performs long multiplication on two BigIntegers
- *
- * Modeled after 'multiply' in MutableBigInteger.java.
- *
- * @param array $x_value
- * @param array $y_value
- * @return array
- * @access private
- */
- static function _regularMultiply($x_value, $y_value)
- {
- $x_length = count($x_value);
- $y_length = count($y_value);
- if (!$x_length || !$y_length) { // a 0 is being multiplied
- return array();
- }
- if ($x_length < $y_length) {
- $temp = $x_value;
- $x_value = $y_value;
- $y_value = $temp;
- $x_length = count($x_value);
- $y_length = count($y_value);
- }
- $product_value = self::_array_repeat(0, $x_length + $y_length);
- // the following for loop could be removed if the for loop following it
- // (the one with nested for loops) initially set $i to 0, but
- // doing so would also make the result in one set of unnecessary adds,
- // since on the outermost loops first pass, $product->value[$k] is going
- // to always be 0
- $carry = 0;
- for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0
- $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $product_value[$j] = (int) ($temp - self::$baseFull * $carry);
- }
- $product_value[$j] = $carry;
- // the above for loop is what the previous comment was talking about. the
- // following for loop is the "one with nested for loops"
- for ($i = 1; $i < $y_length; ++$i) {
- $carry = 0;
- for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) {
- $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $product_value[$k] = (int) ($temp - self::$baseFull * $carry);
- }
- $product_value[$k] = $carry;
- }
- return $product_value;
- }
- /**
- * Performs Karatsuba multiplication on two BigIntegers
- *
- * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}.
- *
- * @param array $x_value
- * @param array $y_value
- * @return array
- * @access private
- */
- static function _karatsuba($x_value, $y_value)
- {
- $m = min(count($x_value) >> 1, count($y_value) >> 1);
- if ($m < self::KARATSUBA_CUTOFF) {
- return self::_regularMultiply($x_value, $y_value);
- }
- $x1 = array_slice($x_value, $m);
- $x0 = array_slice($x_value, 0, $m);
- $y1 = array_slice($y_value, $m);
- $y0 = array_slice($y_value, 0, $m);
- $z2 = self::_karatsuba($x1, $y1);
- $z0 = self::_karatsuba($x0, $y0);
- $z1 = self::_add($x1, false, $x0, false);
- $temp = self::_add($y1, false, $y0, false);
- $z1 = self::_karatsuba($z1[self::VALUE], $temp[self::VALUE]);
- $temp = self::_add($z2, false, $z0, false);
- $z1 = self::_subtract($z1, false, $temp[self::VALUE], false);
- $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
- $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]);
- $xy = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]);
- $xy = self::_add($xy[self::VALUE], $xy[self::SIGN], $z0, false);
- return $xy[self::VALUE];
- }
- /**
- * Performs squaring
- *
- * @param array $x
- * @return array
- * @access private
- */
- static function _square($x = false)
- {
- return count($x) < 2 * self::KARATSUBA_CUTOFF ?
- self::_trim(self::_baseSquare($x)) :
- self::_trim(self::_karatsubaSquare($x));
- }
- /**
- * Performs traditional squaring on two BigIntegers
- *
- * Squaring can be done faster than multiplying a number by itself can be. See
- * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} /
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information.
- *
- * @param array $value
- * @return array
- * @access private
- */
- static function _baseSquare($value)
- {
- if (empty($value)) {
- return array();
- }
- $square_value = self::_array_repeat(0, 2 * count($value));
- for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) {
- $i2 = $i << 1;
- $temp = $square_value[$i2] + $value[$i] * $value[$i];
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $square_value[$i2] = (int) ($temp - self::$baseFull * $carry);
- // note how we start from $i+1 instead of 0 as we do in multiplication.
- for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) {
- $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry;
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $square_value[$k] = (int) ($temp - self::$baseFull * $carry);
- }
- // the following line can yield values larger 2**15. at this point, PHP should switch
- // over to floats.
- $square_value[$i + $max_index + 1] = $carry;
- }
- return $square_value;
- }
- /**
- * Performs Karatsuba "squaring" on two BigIntegers
- *
- * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}.
- *
- * @param array $value
- * @return array
- * @access private
- */
- static function _karatsubaSquare($value)
- {
- $m = count($value) >> 1;
- if ($m < self::KARATSUBA_CUTOFF) {
- return self::_baseSquare($value);
- }
- $x1 = array_slice($value, $m);
- $x0 = array_slice($value, 0, $m);
- $z2 = self::_karatsubaSquare($x1);
- $z0 = self::_karatsubaSquare($x0);
- $z1 = self::_add($x1, false, $x0, false);
- $z1 = self::_karatsubaSquare($z1[self::VALUE]);
- $temp = self::_add($z2, false, $z0, false);
- $z1 = self::_subtract($z1, false, $temp[self::VALUE], false);
- $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
- $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]);
- $xx = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]);
- $xx = self::_add($xx[self::VALUE], $xx[self::SIGN], $z0, false);
- return $xx[self::VALUE];
- }
- /**
- * Divides two BigIntegers.
- *
- * Returns an array whose first element contains the quotient and whose second element contains the
- * "common residue". If the remainder would be positive, the "common residue" and the remainder are the
- * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
- * and the divisor (basically, the "common residue" is the first positive modulo).
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('10');
- * $b = new \phpseclib\Math\BigInteger('20');
- *
- * list($quotient, $remainder) = $a->divide($b);
- *
- * echo $quotient->toString(); // outputs 0
- * echo "\r\n";
- * echo $remainder->toString(); // outputs 10
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $y
- * @return array
- * @access public
- * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}.
- */
- function divide(BigInteger $y)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $quotient = new static();
- $remainder = new static();
- list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);
- if (gmp_sign($remainder->value) < 0) {
- $remainder->value = gmp_add($remainder->value, gmp_abs($y->value));
- }
- return array($this->_normalize($quotient), $this->_normalize($remainder));
- case self::MODE_BCMATH:
- $quotient = new static();
- $remainder = new static();
- $quotient->value = bcdiv($this->value, $y->value, 0);
- $remainder->value = bcmod($this->value, $y->value);
- if ($remainder->value[0] == '-') {
- $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0);
- }
- return array($this->_normalize($quotient), $this->_normalize($remainder));
- }
- if (count($y->value) == 1) {
- list($q, $r) = $this->_divide_digit($this->value, $y->value[0]);
- $quotient = new static();
- $remainder = new static();
- $quotient->value = $q;
- $remainder->value = array($r);
- $quotient->is_negative = $this->is_negative != $y->is_negative;
- return array($this->_normalize($quotient), $this->_normalize($remainder));
- }
- static $zero;
- if (!isset($zero)) {
- $zero = new static();
- }
- $x = clone $this;
- $y = clone $y;
- $x_sign = $x->is_negative;
- $y_sign = $y->is_negative;
- $x->is_negative = $y->is_negative = false;
- $diff = $x->compare($y);
- if (!$diff) {
- $temp = new static();
- $temp->value = array(1);
- $temp->is_negative = $x_sign != $y_sign;
- return array($this->_normalize($temp), $this->_normalize(new static()));
- }
- if ($diff < 0) {
- // if $x is negative, "add" $y.
- if ($x_sign) {
- $x = $y->subtract($x);
- }
- return array($this->_normalize(new static()), $this->_normalize($x));
- }
- // normalize $x and $y as described in HAC 14.23 / 14.24
- $msb = $y->value[count($y->value) - 1];
- for ($shift = 0; !($msb & self::$msb); ++$shift) {
- $msb <<= 1;
- }
- $x->_lshift($shift);
- $y->_lshift($shift);
- $y_value = &$y->value;
- $x_max = count($x->value) - 1;
- $y_max = count($y->value) - 1;
- $quotient = new static();
- $quotient_value = &$quotient->value;
- $quotient_value = $this->_array_repeat(0, $x_max - $y_max + 1);
- static $temp, $lhs, $rhs;
- if (!isset($temp)) {
- $temp = new static();
- $lhs = new static();
- $rhs = new static();
- }
- $temp_value = &$temp->value;
- $rhs_value = &$rhs->value;
- // $temp = $y << ($x_max - $y_max-1) in base 2**26
- $temp_value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y_value);
- while ($x->compare($temp) >= 0) {
- // calculate the "common residue"
- ++$quotient_value[$x_max - $y_max];
- $x = $x->subtract($temp);
- $x_max = count($x->value) - 1;
- }
- for ($i = $x_max; $i >= $y_max + 1; --$i) {
- $x_value = &$x->value;
- $x_window = array(
- isset($x_value[$i]) ? $x_value[$i] : 0,
- isset($x_value[$i - 1]) ? $x_value[$i - 1] : 0,
- isset($x_value[$i - 2]) ? $x_value[$i - 2] : 0
- );
- $y_window = array(
- $y_value[$y_max],
- ($y_max > 0) ? $y_value[$y_max - 1] : 0
- );
- $q_index = $i - $y_max - 1;
- if ($x_window[0] == $y_window[0]) {
- $quotient_value[$q_index] = self::$maxDigit;
- } else {
- $quotient_value[$q_index] = $this->_safe_divide(
- $x_window[0] * self::$baseFull + $x_window[1],
- $y_window[0]
- );
- }
- $temp_value = array($y_window[1], $y_window[0]);
- $lhs->value = array($quotient_value[$q_index]);
- $lhs = $lhs->multiply($temp);
- $rhs_value = array($x_window[2], $x_window[1], $x_window[0]);
- while ($lhs->compare($rhs) > 0) {
- --$quotient_value[$q_index];
- $lhs->value = array($quotient_value[$q_index]);
- $lhs = $lhs->multiply($temp);
- }
- $adjust = $this->_array_repeat(0, $q_index);
- $temp_value = array($quotient_value[$q_index]);
- $temp = $temp->multiply($y);
- $temp_value = &$temp->value;
- $temp_value = array_merge($adjust, $temp_value);
- $x = $x->subtract($temp);
- if ($x->compare($zero) < 0) {
- $temp_value = array_merge($adjust, $y_value);
- $x = $x->add($temp);
- --$quotient_value[$q_index];
- }
- $x_max = count($x_value) - 1;
- }
- // unnormalize the remainder
- $x->_rshift($shift);
- $quotient->is_negative = $x_sign != $y_sign;
- // calculate the "common residue", if appropriate
- if ($x_sign) {
- $y->_rshift($shift);
- $x = $y->subtract($x);
- }
- return array($this->_normalize($quotient), $this->_normalize($x));
- }
- /**
- * Divides a BigInteger by a regular integer
- *
- * abc / x = a00 / x + b0 / x + c / x
- *
- * @param array $dividend
- * @param array $divisor
- * @return array
- * @access private
- */
- static function _divide_digit($dividend, $divisor)
- {
- $carry = 0;
- $result = array();
- for ($i = count($dividend) - 1; $i >= 0; --$i) {
- $temp = self::$baseFull * $carry + $dividend[$i];
- $result[$i] = self::_safe_divide($temp, $divisor);
- $carry = (int) ($temp - $divisor * $result[$i]);
- }
- return array($result, $carry);
- }
- /**
- * Performs modular exponentiation.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger('10');
- * $b = new \phpseclib\Math\BigInteger('20');
- * $c = new \phpseclib\Math\BigInteger('30');
- *
- * $c = $a->modPow($b, $c);
- *
- * echo $c->toString(); // outputs 10
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $e
- * @param \phpseclib\Math\BigInteger $n
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and
- * and although the approach involving repeated squaring does vastly better, it, too, is impractical
- * for our purposes. The reason being that division - by far the most complicated and time-consuming
- * of the basic operations (eg. +,-,*,/) - occurs multiple times within it.
- *
- * Modular reductions resolve this issue. Although an individual modular reduction takes more time
- * then an individual division, when performed in succession (with the same modulo), they're a lot faster.
- *
- * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction,
- * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the
- * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because
- * the product of two odd numbers is odd), but what about when RSA isn't used?
- *
- * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a
- * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the
- * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however,
- * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and
- * the other, a power of two - and recombine them, later. This is the method that this modPow function uses.
- * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates.
- */
- function modPow(BigInteger $e, BigInteger $n)
- {
- $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs();
- if ($e->compare(new static()) < 0) {
- $e = $e->abs();
- $temp = $this->modInverse($n);
- if ($temp === false) {
- return false;
- }
- return $this->_normalize($temp->modPow($e, $n));
- }
- if (MATH_BIGINTEGER_MODE == self::MODE_GMP) {
- $temp = new static();
- $temp->value = gmp_powm($this->value, $e->value, $n->value);
- return $this->_normalize($temp);
- }
- if ($this->compare(new static()) < 0 || $this->compare($n) > 0) {
- list(, $temp) = $this->divide($n);
- return $temp->modPow($e, $n);
- }
- if (defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
- $components = array(
- 'modulus' => $n->toBytes(true),
- 'publicExponent' => $e->toBytes(true)
- );
- $components = array(
- 'modulus' => pack('Ca*a*', 2, self::_encodeASN1Length(strlen($components['modulus'])), $components['modulus']),
- 'publicExponent' => pack('Ca*a*', 2, self::_encodeASN1Length(strlen($components['publicExponent'])), $components['publicExponent'])
- );
- $RSAPublicKey = pack(
- 'Ca*a*a*',
- 48,
- self::_encodeASN1Length(strlen($components['modulus']) + strlen($components['publicExponent'])),
- $components['modulus'],
- $components['publicExponent']
- );
- $rsaOID = "\x30\x0d\x06\x09\x2a\x86\x48\x86\xf7\x0d\x01\x01\x01\x05\x00"; // hex version of MA0GCSqGSIb3DQEBAQUA
- $RSAPublicKey = chr(0) . $RSAPublicKey;
- $RSAPublicKey = chr(3) . self::_encodeASN1Length(strlen($RSAPublicKey)) . $RSAPublicKey;
- $encapsulated = pack(
- 'Ca*a*',
- 48,
- self::_encodeASN1Length(strlen($rsaOID . $RSAPublicKey)),
- $rsaOID . $RSAPublicKey
- );
- $RSAPublicKey = "-----BEGIN PUBLIC KEY-----\r\n" .
- chunk_split(Base64::encode($encapsulated)) .
- '-----END PUBLIC KEY-----';
- $plaintext = str_pad($this->toBytes(), strlen($n->toBytes(true)) - 1, "\0", STR_PAD_LEFT);
- if (openssl_public_encrypt($plaintext, $result, $RSAPublicKey, OPENSSL_NO_PADDING)) {
- return new static($result, 256);
- }
- }
- if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) {
- $temp = new static();
- $temp->value = bcpowmod($this->value, $e->value, $n->value, 0);
- return $this->_normalize($temp);
- }
- if (empty($e->value)) {
- $temp = new static();
- $temp->value = array(1);
- return $this->_normalize($temp);
- }
- if ($e->value == array(1)) {
- list(, $temp) = $this->divide($n);
- return $this->_normalize($temp);
- }
- if ($e->value == array(2)) {
- $temp = new static();
- $temp->value = self::_square($this->value);
- list(, $temp) = $temp->divide($n);
- return $this->_normalize($temp);
- }
- return $this->_normalize($this->_slidingWindow($e, $n, self::BARRETT));
- // the following code, although not callable, can be run independently of the above code
- // although the above code performed better in my benchmarks the following could might
- // perform better under different circumstances. in lieu of deleting it it's just been
- // made uncallable
- // is the modulo odd?
- if ($n->value[0] & 1) {
- return $this->_normalize($this->_slidingWindow($e, $n, self::MONTGOMERY));
- }
- // if it's not, it's even
- // find the lowest set bit (eg. the max pow of 2 that divides $n)
- for ($i = 0; $i < count($n->value); ++$i) {
- if ($n->value[$i]) {
- $temp = decbin($n->value[$i]);
- $j = strlen($temp) - strrpos($temp, '1') - 1;
- $j+= 26 * $i;
- break;
- }
- }
- // at this point, 2^$j * $n/(2^$j) == $n
- $mod1 = clone $n;
- $mod1->_rshift($j);
- $mod2 = new static();
- $mod2->value = array(1);
- $mod2->_lshift($j);
- $part1 = ($mod1->value != array(1)) ? $this->_slidingWindow($e, $mod1, self::MONTGOMERY) : new static();
- $part2 = $this->_slidingWindow($e, $mod2, self::POWEROF2);
- $y1 = $mod2->modInverse($mod1);
- $y2 = $mod1->modInverse($mod2);
- $result = $part1->multiply($mod2);
- $result = $result->multiply($y1);
- $temp = $part2->multiply($mod1);
- $temp = $temp->multiply($y2);
- $result = $result->add($temp);
- list(, $result) = $result->divide($n);
- return $this->_normalize($result);
- }
- /**
- * Performs modular exponentiation.
- *
- * Alias for modPow().
- *
- * @param \phpseclib\Math\BigInteger $e
- * @param \phpseclib\Math\BigInteger $n
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function powMod(BigInteger $e, BigInteger $n)
- {
- return $this->modPow($e, $n);
- }
- /**
- * Sliding Window k-ary Modular Exponentiation
- *
- * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims,
- * however, this function performs a modular reduction after every multiplication and squaring operation.
- * As such, this function has the same preconditions that the reductions being used do.
- *
- * @param \phpseclib\Math\BigInteger $e
- * @param \phpseclib\Math\BigInteger $n
- * @param int $mode
- * @return \phpseclib\Math\BigInteger
- * @access private
- */
- function _slidingWindow($e, $n, $mode)
- {
- static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function
- //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1
- $e_value = $e->value;
- $e_length = count($e_value) - 1;
- $e_bits = decbin($e_value[$e_length]);
- for ($i = $e_length - 1; $i >= 0; --$i) {
- $e_bits.= str_pad(decbin($e_value[$i]), self::$base, '0', STR_PAD_LEFT);
- }
- $e_length = strlen($e_bits);
- // calculate the appropriate window size.
- // $window_size == 3 if $window_ranges is between 25 and 81, for example.
- for ($i = 0, $window_size = 1; $i < count($window_ranges) && $e_length > $window_ranges[$i]; ++$window_size, ++$i) {
- }
- $n_value = $n->value;
- // precompute $this^0 through $this^$window_size
- $powers = array();
- $powers[1] = self::_prepareReduce($this->value, $n_value, $mode);
- $powers[2] = self::_squareReduce($powers[1], $n_value, $mode);
- // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end
- // in a 1. ie. it's supposed to be odd.
- $temp = 1 << ($window_size - 1);
- for ($i = 1; $i < $temp; ++$i) {
- $i2 = $i << 1;
- $powers[$i2 + 1] = self::_multiplyReduce($powers[$i2 - 1], $powers[2], $n_value, $mode);
- }
- $result = array(1);
- $result = self::_prepareReduce($result, $n_value, $mode);
- for ($i = 0; $i < $e_length;) {
- if (!$e_bits[$i]) {
- $result = self::_squareReduce($result, $n_value, $mode);
- ++$i;
- } else {
- for ($j = $window_size - 1; $j > 0; --$j) {
- if (!empty($e_bits[$i + $j])) {
- break;
- }
- }
- // eg. the length of substr($e_bits, $i, $j + 1)
- for ($k = 0; $k <= $j; ++$k) {
- $result = self::_squareReduce($result, $n_value, $mode);
- }
- $result = self::_multiplyReduce($result, $powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $mode);
- $i += $j + 1;
- }
- }
- $temp = new static();
- $temp->value = self::_reduce($result, $n_value, $mode);
- return $temp;
- }
- /**
- * Modular reduction
- *
- * For most $modes this will return the remainder.
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @param int $mode
- * @return array
- */
- static function _reduce($x, $n, $mode)
- {
- switch ($mode) {
- case self::MONTGOMERY:
- return self::_montgomery($x, $n);
- case self::BARRETT:
- return self::_barrett($x, $n);
- case self::POWEROF2:
- $lhs = new static();
- $lhs->value = $x;
- $rhs = new static();
- $rhs->value = $n;
- return $x->_mod2($n);
- case self::CLASSIC:
- $lhs = new static();
- $lhs->value = $x;
- $rhs = new static();
- $rhs->value = $n;
- list(, $temp) = $lhs->divide($rhs);
- return $temp->value;
- case self::NONE:
- return $x;
- default:
- // an invalid $mode was provided
- }
- }
- /**
- * Modular reduction preperation
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @param int $mode
- * @return array
- */
- static function _prepareReduce($x, $n, $mode)
- {
- if ($mode == self::MONTGOMERY) {
- return self::_prepMontgomery($x, $n);
- }
- return self::_reduce($x, $n, $mode);
- }
- /**
- * Modular multiply
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $y
- * @param array $n
- * @param int $mode
- * @return array
- */
- static function _multiplyReduce($x, $y, $n, $mode)
- {
- if ($mode == self::MONTGOMERY) {
- return self::_montgomeryMultiply($x, $y, $n);
- }
- $temp = self::_multiply($x, false, $y, false);
- return self::_reduce($temp[self::VALUE], $n, $mode);
- }
- /**
- * Modular square
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @param int $mode
- * @return array
- */
- static function _squareReduce($x, $n, $mode)
- {
- if ($mode == self::MONTGOMERY) {
- return self::_montgomeryMultiply($x, $x, $n);
- }
- return self::_reduce(self::_square($x), $n, $mode);
- }
- /**
- * Modulos for Powers of Two
- *
- * Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1),
- * we'll just use this function as a wrapper for doing that.
- *
- * @see self::_slidingWindow()
- * @access private
- * @param \phpseclib\Math\BigInteger
- * @return \phpseclib\Math\BigInteger
- */
- function _mod2($n)
- {
- $temp = new static();
- $temp->value = array(1);
- return $this->bitwise_and($n->subtract($temp));
- }
- /**
- * Barrett Modular Reduction
- *
- * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly,
- * so as not to require negative numbers (initially, this script didn't support negative numbers).
- *
- * Employs "folding", as described at
- * {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from
- * it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x."
- *
- * Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that
- * usable on account of (1) its not using reasonable radix points as discussed in
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable
- * radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that
- * (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line
- * comments for details.
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $n
- * @param array $m
- * @return array
- */
- static function _barrett($n, $m)
- {
- static $cache = array(
- self::VARIABLE => array(),
- self::DATA => array()
- );
- $m_length = count($m);
- // if (self::_compare($n, self::_square($m)) >= 0) {
- if (count($n) > 2 * $m_length) {
- $lhs = new static();
- $rhs = new static();
- $lhs->value = $n;
- $rhs->value = $m;
- list(, $temp) = $lhs->divide($rhs);
- return $temp->value;
- }
- // if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced
- if ($m_length < 5) {
- return self::_regularBarrett($n, $m);
- }
- // n = 2 * m.length
- if (($key = array_search($m, $cache[self::VARIABLE])) === false) {
- $key = count($cache[self::VARIABLE]);
- $cache[self::VARIABLE][] = $m;
- $lhs = new static();
- $lhs_value = &$lhs->value;
- $lhs_value = self::_array_repeat(0, $m_length + ($m_length >> 1));
- $lhs_value[] = 1;
- $rhs = new static();
- $rhs->value = $m;
- list($u, $m1) = $lhs->divide($rhs);
- $u = $u->value;
- $m1 = $m1->value;
- $cache[self::DATA][] = array(
- 'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1)
- 'm1'=> $m1 // m.length
- );
- } else {
- extract($cache[self::DATA][$key]);
- }
- $cutoff = $m_length + ($m_length >> 1);
- $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1)
- $msd = array_slice($n, $cutoff); // m.length >> 1
- $lsd = self::_trim($lsd);
- $temp = self::_multiply($msd, false, $m1, false);
- $n = self::_add($lsd, false, $temp[self::VALUE], false); // m.length + (m.length >> 1) + 1
- if ($m_length & 1) {
- return self::_regularBarrett($n[self::VALUE], $m);
- }
- // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2
- $temp = array_slice($n[self::VALUE], $m_length - 1);
- // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2
- // if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1
- $temp = self::_multiply($temp, false, $u, false);
- // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1
- // if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1)
- $temp = array_slice($temp[self::VALUE], ($m_length >> 1) + 1);
- // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1
- // if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1)
- $temp = self::_multiply($temp, false, $m, false);
- // at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit
- // number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop
- // following this comment would loop a lot (hence our calling _regularBarrett() in that situation).
- $result = self::_subtract($n[self::VALUE], false, $temp[self::VALUE], false);
- while (self::_compare($result[self::VALUE], $result[self::SIGN], $m, false) >= 0) {
- $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $m, false);
- }
- return $result[self::VALUE];
- }
- /**
- * (Regular) Barrett Modular Reduction
- *
- * For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this
- * is that this function does not fold the denominator into a smaller form.
- *
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @return array
- */
- static function _regularBarrett($x, $n)
- {
- static $cache = array(
- self::VARIABLE => array(),
- self::DATA => array()
- );
- $n_length = count($n);
- if (count($x) > 2 * $n_length) {
- $lhs = new static();
- $rhs = new static();
- $lhs->value = $x;
- $rhs->value = $n;
- list(, $temp) = $lhs->divide($rhs);
- return $temp->value;
- }
- if (($key = array_search($n, $cache[self::VARIABLE])) === false) {
- $key = count($cache[self::VARIABLE]);
- $cache[self::VARIABLE][] = $n;
- $lhs = new static();
- $lhs_value = &$lhs->value;
- $lhs_value = self::_array_repeat(0, 2 * $n_length);
- $lhs_value[] = 1;
- $rhs = new static();
- $rhs->value = $n;
- list($temp, ) = $lhs->divide($rhs); // m.length
- $cache[self::DATA][] = $temp->value;
- }
- // 2 * m.length - (m.length - 1) = m.length + 1
- $temp = array_slice($x, $n_length - 1);
- // (m.length + 1) + m.length = 2 * m.length + 1
- $temp = self::_multiply($temp, false, $cache[self::DATA][$key], false);
- // (2 * m.length + 1) - (m.length - 1) = m.length + 2
- $temp = array_slice($temp[self::VALUE], $n_length + 1);
- // m.length + 1
- $result = array_slice($x, 0, $n_length + 1);
- // m.length + 1
- $temp = self::_multiplyLower($temp, false, $n, false, $n_length + 1);
- // $temp == array_slice(self::_multiply($temp, false, $n, false)->value, 0, $n_length + 1)
- if (self::_compare($result, false, $temp[self::VALUE], $temp[self::SIGN]) < 0) {
- $corrector_value = self::_array_repeat(0, $n_length + 1);
- $corrector_value[count($corrector_value)] = 1;
- $result = self::_add($result, false, $corrector_value, false);
- $result = $result[self::VALUE];
- }
- // at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits
- $result = self::_subtract($result, false, $temp[self::VALUE], $temp[self::SIGN]);
- while (self::_compare($result[self::VALUE], $result[self::SIGN], $n, false) > 0) {
- $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $n, false);
- }
- return $result[self::VALUE];
- }
- /**
- * Performs long multiplication up to $stop digits
- *
- * If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved.
- *
- * @see self::_regularBarrett()
- * @param array $x_value
- * @param bool $x_negative
- * @param array $y_value
- * @param bool $y_negative
- * @param int $stop
- * @return array
- * @access private
- */
- static function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop)
- {
- $x_length = count($x_value);
- $y_length = count($y_value);
- if (!$x_length || !$y_length) { // a 0 is being multiplied
- return array(
- self::VALUE => array(),
- self::SIGN => false
- );
- }
- if ($x_length < $y_length) {
- $temp = $x_value;
- $x_value = $y_value;
- $y_value = $temp;
- $x_length = count($x_value);
- $y_length = count($y_value);
- }
- $product_value = self::_array_repeat(0, $x_length + $y_length);
- // the following for loop could be removed if the for loop following it
- // (the one with nested for loops) initially set $i to 0, but
- // doing so would also make the result in one set of unnecessary adds,
- // since on the outermost loops first pass, $product->value[$k] is going
- // to always be 0
- $carry = 0;
- for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i
- $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $product_value[$j] = (int) ($temp - self::$baseFull * $carry);
- }
- if ($j < $stop) {
- $product_value[$j] = $carry;
- }
- // the above for loop is what the previous comment was talking about. the
- // following for loop is the "one with nested for loops"
- for ($i = 1; $i < $y_length; ++$i) {
- $carry = 0;
- for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) {
- $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $product_value[$k] = (int) ($temp - self::$baseFull * $carry);
- }
- if ($k < $stop) {
- $product_value[$k] = $carry;
- }
- }
- return array(
- self::VALUE => self::_trim($product_value),
- self::SIGN => $x_negative != $y_negative
- );
- }
- /**
- * Montgomery Modular Reduction
- *
- * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n.
- * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be
- * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function
- * to work correctly.
- *
- * @see self::_prepMontgomery()
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @return array
- */
- static function _montgomery($x, $n)
- {
- static $cache = array(
- self::VARIABLE => array(),
- self::DATA => array()
- );
- if (($key = array_search($n, $cache[self::VARIABLE])) === false) {
- $key = count($cache[self::VARIABLE]);
- $cache[self::VARIABLE][] = $x;
- $cache[self::DATA][] = self::_modInverse67108864($n);
- }
- $k = count($n);
- $result = array(self::VALUE => $x);
- for ($i = 0; $i < $k; ++$i) {
- $temp = $result[self::VALUE][$i] * $cache[self::DATA][$key];
- $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
- $temp = self::_regularMultiply(array($temp), $n);
- $temp = array_merge($this->_array_repeat(0, $i), $temp);
- $result = self::_add($result[self::VALUE], false, $temp, false);
- }
- $result[self::VALUE] = array_slice($result[self::VALUE], $k);
- if (self::_compare($result, false, $n, false) >= 0) {
- $result = self::_subtract($result[self::VALUE], false, $n, false);
- }
- return $result[self::VALUE];
- }
- /**
- * Montgomery Multiply
- *
- * Interleaves the montgomery reduction and long multiplication algorithms together as described in
- * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36}
- *
- * @see self::_prepMontgomery()
- * @see self::_montgomery()
- * @access private
- * @param array $x
- * @param array $y
- * @param array $m
- * @return array
- */
- static function _montgomeryMultiply($x, $y, $m)
- {
- $temp = self::_multiply($x, false, $y, false);
- return self::_montgomery($temp[self::VALUE], $m);
- // the following code, although not callable, can be run independently of the above code
- // although the above code performed better in my benchmarks the following could might
- // perform better under different circumstances. in lieu of deleting it it's just been
- // made uncallable
- static $cache = array(
- self::VARIABLE => array(),
- self::DATA => array()
- );
- if (($key = array_search($m, $cache[self::VARIABLE])) === false) {
- $key = count($cache[self::VARIABLE]);
- $cache[self::VARIABLE][] = $m;
- $cache[self::DATA][] = self::_modInverse67108864($m);
- }
- $n = max(count($x), count($y), count($m));
- $x = array_pad($x, $n, 0);
- $y = array_pad($y, $n, 0);
- $m = array_pad($m, $n, 0);
- $a = array(self::VALUE => self::_array_repeat(0, $n + 1));
- for ($i = 0; $i < $n; ++$i) {
- $temp = $a[self::VALUE][0] + $x[$i] * $y[0];
- $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
- $temp = $temp * $cache[self::DATA][$key];
- $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
- $temp = self::_add(self::_regularMultiply(array($x[$i]), $y), false, self::_regularMultiply(array($temp), $m), false);
- $a = self::_add($a[self::VALUE], false, $temp[self::VALUE], false);
- $a[self::VALUE] = array_slice($a[self::VALUE], 1);
- }
- if (self::_compare($a[self::VALUE], false, $m, false) >= 0) {
- $a = self::_subtract($a[self::VALUE], false, $m, false);
- }
- return $a[self::VALUE];
- }
- /**
- * Prepare a number for use in Montgomery Modular Reductions
- *
- * @see self::_montgomery()
- * @see self::_slidingWindow()
- * @access private
- * @param array $x
- * @param array $n
- * @return array
- */
- static function _prepMontgomery($x, $n)
- {
- $lhs = new static();
- $lhs->value = array_merge(self::_array_repeat(0, count($n)), $x);
- $rhs = new static();
- $rhs->value = $n;
- list(, $temp) = $lhs->divide($rhs);
- return $temp->value;
- }
- /**
- * Modular Inverse of a number mod 2**26 (eg. 67108864)
- *
- * Based off of the bnpInvDigit function implemented and justified in the following URL:
- *
- * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
- *
- * The following URL provides more info:
- *
- * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
- *
- * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
- * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
- * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
- * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
- * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
- * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
- * 40 bits, which only 64-bit floating points will support.
- *
- * Thanks to Pedro Gimeno Fortea for input!
- *
- * @see self::_montgomery()
- * @access private
- * @param array $x
- * @return int
- */
- function _modInverse67108864($x) // 2**26 == 67,108,864
- {
- $x = -$x[0];
- $result = $x & 0x3; // x**-1 mod 2**2
- $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
- $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8
- $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
- $result = fmod($result * (2 - fmod($x * $result, self::$baseFull)), self::$baseFull); // x**-1 mod 2**26
- return $result & self::$maxDigit;
- }
- /**
- * Calculates modular inverses.
- *
- * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger(30);
- * $b = new \phpseclib\Math\BigInteger(17);
- *
- * $c = $a->modInverse($b);
- * echo $c->toString(); // outputs 4
- *
- * echo "\r\n";
- *
- * $d = $a->multiply($c);
- * list(, $d) = $d->divide($b);
- * echo $d; // outputs 1 (as per the definition of modular inverse)
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $n
- * @return \phpseclib\Math\BigInteger|false
- * @access public
- * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information.
- */
- function modInverse(BigInteger $n)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_invert($this->value, $n->value);
- return ($temp->value === false) ? false : $this->_normalize($temp);
- }
- static $zero, $one;
- if (!isset($zero)) {
- $zero = new static();
- $one = new static(1);
- }
- // $x mod -$n == $x mod $n.
- $n = $n->abs();
- if ($this->compare($zero) < 0) {
- $temp = $this->abs();
- $temp = $temp->modInverse($n);
- return $this->_normalize($n->subtract($temp));
- }
- extract($this->extendedGCD($n));
- if (!$gcd->equals($one)) {
- return false;
- }
- $x = $x->compare($zero) < 0 ? $x->add($n) : $x;
- return $this->compare($zero) < 0 ? $this->_normalize($n->subtract($x)) : $this->_normalize($x);
- }
- /**
- * Calculates the greatest common divisor and Bezout's identity.
- *
- * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that
- * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
- * combination is returned is dependant upon which mode is in use. See
- * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger(693);
- * $b = new \phpseclib\Math\BigInteger(609);
- *
- * extract($a->extendedGCD($b));
- *
- * echo $gcd->toString() . "\r\n"; // outputs 21
- * echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $n
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal Calculates the GCD using the binary xGCD algorithim described in
- * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes,
- * the more traditional algorithim requires "relatively costly multiple-precision divisions".
- */
- function extendedGCD(BigInteger $n)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- extract(gmp_gcdext($this->value, $n->value));
- return array(
- 'gcd' => $this->_normalize(new static($g)),
- 'x' => $this->_normalize(new static($s)),
- 'y' => $this->_normalize(new static($t))
- );
- case self::MODE_BCMATH:
- // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
- // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is,
- // the basic extended euclidean algorithim is what we're using.
- $u = $this->value;
- $v = $n->value;
- $a = '1';
- $b = '0';
- $c = '0';
- $d = '1';
- while (bccomp($v, '0', 0) != 0) {
- $q = bcdiv($u, $v, 0);
- $temp = $u;
- $u = $v;
- $v = bcsub($temp, bcmul($v, $q, 0), 0);
- $temp = $a;
- $a = $c;
- $c = bcsub($temp, bcmul($a, $q, 0), 0);
- $temp = $b;
- $b = $d;
- $d = bcsub($temp, bcmul($b, $q, 0), 0);
- }
- return array(
- 'gcd' => $this->_normalize(new static($u)),
- 'x' => $this->_normalize(new static($a)),
- 'y' => $this->_normalize(new static($b))
- );
- }
- $y = clone $n;
- $x = clone $this;
- $g = new static();
- $g->value = array(1);
- while (!(($x->value[0] & 1)|| ($y->value[0] & 1))) {
- $x->_rshift(1);
- $y->_rshift(1);
- $g->_lshift(1);
- }
- $u = clone $x;
- $v = clone $y;
- $a = new static();
- $b = new static();
- $c = new static();
- $d = new static();
- $a->value = $d->value = $g->value = array(1);
- $b->value = $c->value = array();
- while (!empty($u->value)) {
- while (!($u->value[0] & 1)) {
- $u->_rshift(1);
- if ((!empty($a->value) && ($a->value[0] & 1)) || (!empty($b->value) && ($b->value[0] & 1))) {
- $a = $a->add($y);
- $b = $b->subtract($x);
- }
- $a->_rshift(1);
- $b->_rshift(1);
- }
- while (!($v->value[0] & 1)) {
- $v->_rshift(1);
- if ((!empty($d->value) && ($d->value[0] & 1)) || (!empty($c->value) && ($c->value[0] & 1))) {
- $c = $c->add($y);
- $d = $d->subtract($x);
- }
- $c->_rshift(1);
- $d->_rshift(1);
- }
- if ($u->compare($v) >= 0) {
- $u = $u->subtract($v);
- $a = $a->subtract($c);
- $b = $b->subtract($d);
- } else {
- $v = $v->subtract($u);
- $c = $c->subtract($a);
- $d = $d->subtract($b);
- }
- }
- return array(
- 'gcd' => $this->_normalize($g->multiply($v)),
- 'x' => $this->_normalize($c),
- 'y' => $this->_normalize($d)
- );
- }
- /**
- * Calculates the greatest common divisor
- *
- * Say you have 693 and 609. The GCD is 21.
- *
- * Here's an example:
- * <code>
- * <?php
- * $a = new \phpseclib\Math\BigInteger(693);
- * $b = new \phpseclib\Math\BigInteger(609);
- *
- * $gcd = a->extendedGCD($b);
- *
- * echo $gcd->toString() . "\r\n"; // outputs 21
- * ?>
- * </code>
- *
- * @param \phpseclib\Math\BigInteger $n
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function gcd(BigInteger $n)
- {
- extract($this->extendedGCD($n));
- return $gcd;
- }
- /**
- * Absolute value.
- *
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function abs()
- {
- $temp = new static();
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp->value = gmp_abs($this->value);
- break;
- case self::MODE_BCMATH:
- $temp->value = (bccomp($this->value, '0', 0) < 0) ? substr($this->value, 1) : $this->value;
- break;
- default:
- $temp->value = $this->value;
- }
- return $temp;
- }
- /**
- * Compares two numbers.
- *
- * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is
- * demonstrated thusly:
- *
- * $x > $y: $x->compare($y) > 0
- * $x < $y: $x->compare($y) < 0
- * $x == $y: $x->compare($y) == 0
- *
- * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
- *
- * @param \phpseclib\Math\BigInteger $y
- * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
- * @access public
- * @see self::equals()
- * @internal Could return $this->subtract($x), but that's not as fast as what we do do.
- */
- function compare(BigInteger $y)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- return gmp_cmp($this->value, $y->value);
- case self::MODE_BCMATH:
- return bccomp($this->value, $y->value, 0);
- }
- return self::_compare($this->value, $this->is_negative, $y->value, $y->is_negative);
- }
- /**
- * Compares two numbers.
- *
- * @param array $x_value
- * @param bool $x_negative
- * @param array $y_value
- * @param bool $y_negative
- * @return int
- * @see self::compare()
- * @access private
- */
- static function _compare($x_value, $x_negative, $y_value, $y_negative)
- {
- if ($x_negative != $y_negative) {
- return (!$x_negative && $y_negative) ? 1 : -1;
- }
- $result = $x_negative ? -1 : 1;
- if (count($x_value) != count($y_value)) {
- return (count($x_value) > count($y_value)) ? $result : -$result;
- }
- $size = max(count($x_value), count($y_value));
- $x_value = array_pad($x_value, $size, 0);
- $y_value = array_pad($y_value, $size, 0);
- for ($i = count($x_value) - 1; $i >= 0; --$i) {
- if ($x_value[$i] != $y_value[$i]) {
- return ($x_value[$i] > $y_value[$i]) ? $result : -$result;
- }
- }
- return 0;
- }
- /**
- * Tests the equality of two numbers.
- *
- * If you need to see if one number is greater than or less than another number, use BigInteger::compare()
- *
- * @param \phpseclib\Math\BigInteger $x
- * @return bool
- * @access public
- * @see self::compare()
- */
- function equals(BigInteger $x)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- return gmp_cmp($this->value, $x->value) == 0;
- default:
- return $this->value === $x->value && $this->is_negative == $x->is_negative;
- }
- }
- /**
- * Set Precision
- *
- * Some bitwise operations give different results depending on the precision being used. Examples include left
- * shift, not, and rotates.
- *
- * @param int $bits
- * @access public
- */
- function setPrecision($bits)
- {
- if ($bits < 1) {
- $this->precision = -1;
- $this->bitmask = false;
- return;
- }
- $this->precision = $bits;
- if (MATH_BIGINTEGER_MODE != self::MODE_BCMATH) {
- $this->bitmask = new static(chr((1 << ($bits & 0x7)) - 1) . str_repeat(chr(0xFF), $bits >> 3), 256);
- } else {
- $this->bitmask = new static(bcpow('2', $bits, 0));
- }
- $temp = $this->_normalize($this);
- $this->value = $temp->value;
- }
- /**
- * Get Precision
- *
- * @return int
- * @see self::setPrecision()
- * @access public
- */
- function getPrecision()
- {
- return $this->precision;
- }
- /**
- * Logical And
- *
- * @param \phpseclib\Math\BigInteger $x
- * @access public
- * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
- * @return \phpseclib\Math\BigInteger
- */
- function bitwise_and(BigInteger $x)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_and($this->value, $x->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $left = $this->toBytes();
- $right = $x->toBytes();
- $length = max(strlen($left), strlen($right));
- $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
- $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
- return $this->_normalize(new static($left & $right, 256));
- }
- $result = clone $this;
- $length = min(count($x->value), count($this->value));
- $result->value = array_slice($result->value, 0, $length);
- for ($i = 0; $i < $length; ++$i) {
- $result->value[$i]&= $x->value[$i];
- }
- return $this->_normalize($result);
- }
- /**
- * Logical Or
- *
- * @param \phpseclib\Math\BigInteger $x
- * @access public
- * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
- * @return \phpseclib\Math\BigInteger
- */
- function bitwise_or(BigInteger $x)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_or($this->value, $x->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $left = $this->toBytes();
- $right = $x->toBytes();
- $length = max(strlen($left), strlen($right));
- $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
- $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
- return $this->_normalize(new static($left | $right, 256));
- }
- $length = max(count($this->value), count($x->value));
- $result = clone $this;
- $result->value = array_pad($result->value, $length, 0);
- $x->value = array_pad($x->value, $length, 0);
- for ($i = 0; $i < $length; ++$i) {
- $result->value[$i]|= $x->value[$i];
- }
- return $this->_normalize($result);
- }
- /**
- * Logical Exclusive-Or
- *
- * @param \phpseclib\Math\BigInteger $x
- * @access public
- * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
- * @return \phpseclib\Math\BigInteger
- */
- function bitwise_xor(BigInteger $x)
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- $temp = new static();
- $temp->value = gmp_xor($this->value, $x->value);
- return $this->_normalize($temp);
- case self::MODE_BCMATH:
- $left = $this->toBytes();
- $right = $x->toBytes();
- $length = max(strlen($left), strlen($right));
- $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
- $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
- return $this->_normalize(new static($left ^ $right, 256));
- }
- $length = max(count($this->value), count($x->value));
- $result = clone $this;
- $result->value = array_pad($result->value, $length, 0);
- $x->value = array_pad($x->value, $length, 0);
- for ($i = 0; $i < $length; ++$i) {
- $result->value[$i]^= $x->value[$i];
- }
- return $this->_normalize($result);
- }
- /**
- * Logical Not
- *
- * @access public
- * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
- * @return \phpseclib\Math\BigInteger
- */
- function bitwise_not()
- {
- // calculuate "not" without regard to $this->precision
- // (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0)
- $temp = $this->toBytes();
- if ($temp == '') {
- return '';
- }
- $pre_msb = decbin(ord($temp[0]));
- $temp = ~$temp;
- $msb = decbin(ord($temp[0]));
- if (strlen($msb) == 8) {
- $msb = substr($msb, strpos($msb, '0'));
- }
- $temp[0] = chr(bindec($msb));
- // see if we need to add extra leading 1's
- $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8;
- $new_bits = $this->precision - $current_bits;
- if ($new_bits <= 0) {
- return $this->_normalize(new static($temp, 256));
- }
- // generate as many leading 1's as we need to.
- $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3);
- self::_base256_lshift($leading_ones, $current_bits);
- $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT);
- return $this->_normalize(new static($leading_ones | $temp, 256));
- }
- /**
- * Logical Right Shift
- *
- * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
- *
- * @param int $shift
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal The only version that yields any speed increases is the internal version.
- */
- function bitwise_rightShift($shift)
- {
- $temp = new static();
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- static $two;
- if (!isset($two)) {
- $two = gmp_init('2');
- }
- $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift));
- break;
- case self::MODE_BCMATH:
- $temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0);
- break;
- default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten
- // and I don't want to do that...
- $temp->value = $this->value;
- $temp->_rshift($shift);
- }
- return $this->_normalize($temp);
- }
- /**
- * Logical Left Shift
- *
- * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
- *
- * @param int $shift
- * @return \phpseclib\Math\BigInteger
- * @access public
- * @internal The only version that yields any speed increases is the internal version.
- */
- function bitwise_leftShift($shift)
- {
- $temp = new static();
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- static $two;
- if (!isset($two)) {
- $two = gmp_init('2');
- }
- $temp->value = gmp_mul($this->value, gmp_pow($two, $shift));
- break;
- case self::MODE_BCMATH:
- $temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0);
- break;
- default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten
- // and I don't want to do that...
- $temp->value = $this->value;
- $temp->_lshift($shift);
- }
- return $this->_normalize($temp);
- }
- /**
- * Logical Left Rotate
- *
- * Instead of the top x bits being dropped they're appended to the shifted bit string.
- *
- * @param int $shift
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function bitwise_leftRotate($shift)
- {
- $bits = $this->toBytes();
- if ($this->precision > 0) {
- $precision = $this->precision;
- if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) {
- $mask = $this->bitmask->subtract(new static(1));
- $mask = $mask->toBytes();
- } else {
- $mask = $this->bitmask->toBytes();
- }
- } else {
- $temp = ord($bits[0]);
- for ($i = 0; $temp >> $i; ++$i) {
- }
- $precision = 8 * strlen($bits) - 8 + $i;
- $mask = chr((1 << ($precision & 0x7)) - 1) . str_repeat(chr(0xFF), $precision >> 3);
- }
- if ($shift < 0) {
- $shift+= $precision;
- }
- $shift%= $precision;
- if (!$shift) {
- return clone $this;
- }
- $left = $this->bitwise_leftShift($shift);
- $left = $left->bitwise_and(new static($mask, 256));
- $right = $this->bitwise_rightShift($precision - $shift);
- $result = MATH_BIGINTEGER_MODE != self::MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right);
- return $this->_normalize($result);
- }
- /**
- * Logical Right Rotate
- *
- * Instead of the bottom x bits being dropped they're prepended to the shifted bit string.
- *
- * @param int $shift
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- function bitwise_rightRotate($shift)
- {
- return $this->bitwise_leftRotate(-$shift);
- }
- /**
- * Generates a random BigInteger
- *
- * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not.
- *
- * @param int $length
- * @return \phpseclib\Math\BigInteger
- * @access private
- */
- static function _random_number_helper($size)
- {
- if (class_exists('\phpseclib\Crypt\Random')) {
- $random = Random::string($size);
- } else {
- $random = '';
- if ($size & 1) {
- $random.= chr(mt_rand(0, 255));
- }
- $blocks = $size >> 1;
- for ($i = 0; $i < $blocks; ++$i) {
- // mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems
- $random.= pack('n', mt_rand(0, 0xFFFF));
- }
- }
- return new static($random, 256);
- }
- /**
- * Generate a random number
- *
- * Returns a random number between $min and $max where $min and $max
- * can be defined using one of the two methods:
- *
- * BigInteger::random($min, $max)
- * BigInteger::random($max, $min)
- *
- * @param \phpseclib\Math\BigInteger $arg1
- * @param \phpseclib\Math\BigInteger $arg2
- * @return \phpseclib\Math\BigInteger
- * @access public
- */
- static function random(BigInteger $min, BigInteger $max)
- {
- $compare = $max->compare($min);
- if (!$compare) {
- return $this->_normalize($min);
- } elseif ($compare < 0) {
- // if $min is bigger then $max, swap $min and $max
- $temp = $max;
- $max = $min;
- $min = $temp;
- }
- static $one;
- if (!isset($one)) {
- $one = new static(1);
- }
- $max = $max->subtract($min->subtract($one));
- $size = strlen(ltrim($max->toBytes(), chr(0)));
- /*
- doing $random % $max doesn't work because some numbers will be more likely to occur than others.
- eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145
- would produce 5 whereas the only value of random that could produce 139 would be 139. ie.
- not all numbers would be equally likely. some would be more likely than others.
- creating a whole new random number until you find one that is within the range doesn't work
- because, for sufficiently small ranges, the likelihood that you'd get a number within that range
- would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability
- would be pretty high that $random would be greater than $max.
- phpseclib works around this using the technique described here:
- http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string
- */
- $random_max = new static(chr(1) . str_repeat("\0", $size), 256);
- $random = static::_random_number_helper($size);
- list($max_multiple) = $random_max->divide($max);
- $max_multiple = $max_multiple->multiply($max);
- while ($random->compare($max_multiple) >= 0) {
- $random = $random->subtract($max_multiple);
- $random_max = $random_max->subtract($max_multiple);
- $random = $random->bitwise_leftShift(8);
- $random = $random->add(self::_random_number_helper(1));
- $random_max = $random_max->bitwise_leftShift(8);
- list($max_multiple) = $random_max->divide($max);
- $max_multiple = $max_multiple->multiply($max);
- }
- list(, $random) = $random->divide($max);
- return $random->add($min);
- }
- /**
- * Generate a random prime number.
- *
- * If there's not a prime within the given range, false will be returned.
- * If more than $timeout seconds have elapsed, give up and return false.
- *
- * @param \phpseclib\Math\BigInteger $min
- * @param \phpseclib\Math\BigInteger $max
- * @param int $timeout
- * @return Math_BigInteger|false
- * @access public
- * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=15 HAC 4.44}.
- */
- static function randomPrime(BigInteger $min, BigInteger $max, $timeout = false)
- {
- $compare = $max->compare($min);
- if (!$compare) {
- return $min->isPrime() ? $min : false;
- } elseif ($compare < 0) {
- // if $min is bigger then $max, swap $min and $max
- $temp = $max;
- $max = $min;
- $min = $temp;
- }
- static $one, $two;
- if (!isset($one)) {
- $one = new static(1);
- $two = new static(2);
- }
- $start = time();
- $x = self::random($min, $max);
- // gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>.
- if (MATH_BIGINTEGER_MODE == self::MODE_GMP && extension_loaded('gmp')) {
- $p = new static();
- $p->value = gmp_nextprime($x->value);
- if ($p->compare($max) <= 0) {
- return $p;
- }
- if (!$min->equals($x)) {
- $x = $x->subtract($one);
- }
- return self::randomPrime($min, $x);
- }
- if ($x->equals($two)) {
- return $x;
- }
- $x->_make_odd();
- if ($x->compare($max) > 0) {
- // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range
- if ($min->equals($max)) {
- return false;
- }
- $x = clone $min;
- $x->_make_odd();
- }
- $initial_x = clone $x;
- while (true) {
- if ($timeout !== false && time() - $start > $timeout) {
- return false;
- }
- if ($x->isPrime()) {
- return $x;
- }
- $x = $x->add($two);
- if ($x->compare($max) > 0) {
- $x = clone $min;
- if ($x->equals($two)) {
- return $x;
- }
- $x->_make_odd();
- }
- if ($x->equals($initial_x)) {
- return false;
- }
- }
- }
- /**
- * Make the current number odd
- *
- * If the current number is odd it'll be unchanged. If it's even, one will be added to it.
- *
- * @see self::randomPrime()
- * @access private
- */
- function _make_odd()
- {
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- gmp_setbit($this->value, 0);
- break;
- case self::MODE_BCMATH:
- if ($this->value[strlen($this->value) - 1] % 2 == 0) {
- $this->value = bcadd($this->value, '1');
- }
- break;
- default:
- $this->value[0] |= 1;
- }
- }
- /**
- * Checks a numer to see if it's prime
- *
- * Assuming the $t parameter is not set, this function has an error rate of 2**-80. The main motivation for the
- * $t parameter is distributability. BigInteger::randomPrime() can be distributed across multiple pageloads
- * on a website instead of just one.
- *
- * @param \phpseclib\Math\BigInteger $t
- * @return bool
- * @access public
- * @internal Uses the
- * {@link http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test Miller-Rabin primality test}. See
- * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=8 HAC 4.24}.
- */
- function isPrime($t = false)
- {
- $length = strlen($this->toBytes());
- if (!$t) {
- // see HAC 4.49 "Note (controlling the error probability)"
- // @codingStandardsIgnoreStart
- if ($length >= 163) { $t = 2; } // floor(1300 / 8)
- else if ($length >= 106) { $t = 3; } // floor( 850 / 8)
- else if ($length >= 81 ) { $t = 4; } // floor( 650 / 8)
- else if ($length >= 68 ) { $t = 5; } // floor( 550 / 8)
- else if ($length >= 56 ) { $t = 6; } // floor( 450 / 8)
- else if ($length >= 50 ) { $t = 7; } // floor( 400 / 8)
- else if ($length >= 43 ) { $t = 8; } // floor( 350 / 8)
- else if ($length >= 37 ) { $t = 9; } // floor( 300 / 8)
- else if ($length >= 31 ) { $t = 12; } // floor( 250 / 8)
- else if ($length >= 25 ) { $t = 15; } // floor( 200 / 8)
- else if ($length >= 18 ) { $t = 18; } // floor( 150 / 8)
- else { $t = 27; }
- // @codingStandardsIgnoreEnd
- }
- // ie. gmp_testbit($this, 0)
- // ie. isEven() or !isOdd()
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- return gmp_prob_prime($this->value, $t) != 0;
- case self::MODE_BCMATH:
- if ($this->value === '2') {
- return true;
- }
- if ($this->value[strlen($this->value) - 1] % 2 == 0) {
- return false;
- }
- break;
- default:
- if ($this->value == array(2)) {
- return true;
- }
- if (~$this->value[0] & 1) {
- return false;
- }
- }
- static $primes, $zero, $one, $two;
- if (!isset($primes)) {
- $primes = array(
- 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
- 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
- 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
- 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
- 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
- 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617,
- 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727,
- 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
- 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
- 953, 967, 971, 977, 983, 991, 997
- );
- if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) {
- for ($i = 0; $i < count($primes); ++$i) {
- $primes[$i] = new static($primes[$i]);
- }
- }
- $zero = new static();
- $one = new static(1);
- $two = new static(2);
- }
- if ($this->equals($one)) {
- return false;
- }
- // see HAC 4.4.1 "Random search for probable primes"
- if (MATH_BIGINTEGER_MODE != self::MODE_INTERNAL) {
- foreach ($primes as $prime) {
- list(, $r) = $this->divide($prime);
- if ($r->equals($zero)) {
- return $this->equals($prime);
- }
- }
- } else {
- $value = $this->value;
- foreach ($primes as $prime) {
- list(, $r) = self::_divide_digit($value, $prime);
- if (!$r) {
- return count($value) == 1 && $value[0] == $prime;
- }
- }
- }
- $n = clone $this;
- $n_1 = $n->subtract($one);
- $n_2 = $n->subtract($two);
- $r = clone $n_1;
- $r_value = $r->value;
- // ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
- if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) {
- $s = 0;
- // if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals($one) check earlier
- while ($r->value[strlen($r->value) - 1] % 2 == 0) {
- $r->value = bcdiv($r->value, '2', 0);
- ++$s;
- }
- } else {
- for ($i = 0, $r_length = count($r_value); $i < $r_length; ++$i) {
- $temp = ~$r_value[$i] & 0xFFFFFF;
- for ($j = 1; ($temp >> $j) & 1; ++$j) {
- }
- if ($j != 25) {
- break;
- }
- }
- $s = 26 * $i + $j - 1;
- $r->_rshift($s);
- }
- for ($i = 0; $i < $t; ++$i) {
- $a = self::random($two, $n_2);
- $y = $a->modPow($r, $n);
- if (!$y->equals($one) && !$y->equals($n_1)) {
- for ($j = 1; $j < $s && !$y->equals($n_1); ++$j) {
- $y = $y->modPow($two, $n);
- if ($y->equals($one)) {
- return false;
- }
- }
- if (!$y->equals($n_1)) {
- return false;
- }
- }
- }
- return true;
- }
- /**
- * Logical Left Shift
- *
- * Shifts BigInteger's by $shift bits.
- *
- * @param int $shift
- * @access private
- */
- function _lshift($shift)
- {
- if ($shift == 0) {
- return;
- }
- $num_digits = (int) ($shift / self::$base);
- $shift %= self::$base;
- $shift = 1 << $shift;
- $carry = 0;
- for ($i = 0; $i < count($this->value); ++$i) {
- $temp = $this->value[$i] * $shift + $carry;
- $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
- $this->value[$i] = (int) ($temp - $carry * self::$baseFull);
- }
- if ($carry) {
- $this->value[count($this->value)] = $carry;
- }
- while ($num_digits--) {
- array_unshift($this->value, 0);
- }
- }
- /**
- * Logical Right Shift
- *
- * Shifts BigInteger's by $shift bits.
- *
- * @param int $shift
- * @access private
- */
- function _rshift($shift)
- {
- if ($shift == 0) {
- return;
- }
- $num_digits = (int) ($shift / self::$base);
- $shift %= self::$base;
- $carry_shift = self::$base - $shift;
- $carry_mask = (1 << $shift) - 1;
- if ($num_digits) {
- $this->value = array_slice($this->value, $num_digits);
- }
- $carry = 0;
- for ($i = count($this->value) - 1; $i >= 0; --$i) {
- $temp = $this->value[$i] >> $shift | $carry;
- $carry = ($this->value[$i] & $carry_mask) << $carry_shift;
- $this->value[$i] = $temp;
- }
- $this->value = $this->_trim($this->value);
- }
- /**
- * Normalize
- *
- * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
- *
- * @param \phpseclib\Math\BigInteger
- * @return \phpseclib\Math\BigInteger
- * @see self::_trim()
- * @access private
- */
- function _normalize($result)
- {
- $result->precision = $this->precision;
- $result->bitmask = $this->bitmask;
- switch (MATH_BIGINTEGER_MODE) {
- case self::MODE_GMP:
- if ($this->bitmask !== false) {
- $result->value = gmp_and($result->value, $result->bitmask->value);
- }
- return $result;
- case self::MODE_BCMATH:
- if (!empty($result->bitmask->value)) {
- $result->value = bcmod($result->value, $result->bitmask->value);
- }
- return $result;
- }
- $value = &$result->value;
- if (!count($value)) {
- return $result;
- }
- $value = $this->_trim($value);
- if (!empty($result->bitmask->value)) {
- $length = min(count($value), count($this->bitmask->value));
- $value = array_slice($value, 0, $length);
- for ($i = 0; $i < $length; ++$i) {
- $value[$i] = $value[$i] & $this->bitmask->value[$i];
- }
- }
- return $result;
- }
- /**
- * Trim
- *
- * Removes leading zeros
- *
- * @param array $value
- * @return \phpseclib\Math\BigInteger
- * @access private
- */
- static function _trim($value)
- {
- for ($i = count($value) - 1; $i >= 0; --$i) {
- if ($value[$i]) {
- break;
- }
- unset($value[$i]);
- }
- return $value;
- }
- /**
- * Array Repeat
- *
- * @param $input Array
- * @param $multiplier mixed
- * @return array
- * @access private
- */
- static function _array_repeat($input, $multiplier)
- {
- return ($multiplier) ? array_fill(0, $multiplier, $input) : array();
- }
- /**
- * Logical Left Shift
- *
- * Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
- *
- * @param $x String
- * @param $shift Integer
- * @return string
- * @access private
- */
- static function _base256_lshift(&$x, $shift)
- {
- if ($shift == 0) {
- return;
- }
- $num_bytes = $shift >> 3; // eg. floor($shift/8)
- $shift &= 7; // eg. $shift % 8
- $carry = 0;
- for ($i = strlen($x) - 1; $i >= 0; --$i) {
- $temp = ord($x[$i]) << $shift | $carry;
- $x[$i] = chr($temp);
- $carry = $temp >> 8;
- }
- $carry = ($carry != 0) ? chr($carry) : '';
- $x = $carry . $x . str_repeat(chr(0), $num_bytes);
- }
- /**
- * Logical Right Shift
- *
- * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
- *
- * @param $x String
- * @param $shift Integer
- * @return string
- * @access private
- */
- static function _base256_rshift(&$x, $shift)
- {
- if ($shift == 0) {
- $x = ltrim($x, chr(0));
- return '';
- }
- $num_bytes = $shift >> 3; // eg. floor($shift/8)
- $shift &= 7; // eg. $shift % 8
- $remainder = '';
- if ($num_bytes) {
- $start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes;
- $remainder = substr($x, $start);
- $x = substr($x, 0, -$num_bytes);
- }
- $carry = 0;
- $carry_shift = 8 - $shift;
- for ($i = 0; $i < strlen($x); ++$i) {
- $temp = (ord($x[$i]) >> $shift) | $carry;
- $carry = (ord($x[$i]) << $carry_shift) & 0xFF;
- $x[$i] = chr($temp);
- }
- $x = ltrim($x, chr(0));
- $remainder = chr($carry >> $carry_shift) . $remainder;
- return ltrim($remainder, chr(0));
- }
- // one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long
- // at 32-bits, while java's longs are 64-bits.
- /**
- * Converts 32-bit integers to bytes.
- *
- * @param int $x
- * @return string
- * @access private
- */
- static function _int2bytes($x)
- {
- return ltrim(pack('N', $x), chr(0));
- }
- /**
- * Converts bytes to 32-bit integers
- *
- * @param string $x
- * @return int
- * @access private
- */
- static function _bytes2int($x)
- {
- $temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT));
- return $temp['int'];
- }
- /**
- * DER-encode an integer
- *
- * The ability to DER-encode integers is needed to create RSA public keys for use with OpenSSL
- *
- * @see self::modPow()
- * @access private
- * @param int $length
- * @return string
- */
- static function _encodeASN1Length($length)
- {
- if ($length <= 0x7F) {
- return chr($length);
- }
- $temp = ltrim(pack('N', $length), chr(0));
- return pack('Ca*', 0x80 | strlen($temp), $temp);
- }
- /**
- * Single digit division
- *
- * Even if int64 is being used the division operator will return a float64 value
- * if the dividend is not evenly divisible by the divisor. Since a float64 doesn't
- * have the precision of int64 this is a problem so, when int64 is being used,
- * we'll guarantee that the dividend is divisible by first subtracting the remainder.
- *
- * @access private
- * @param int $x
- * @param int $y
- * @return int
- */
- static function _safe_divide($x, $y)
- {
- if (self::$base === 26) {
- return (int) ($x / $y);
- }
- // self::$base === 31
- return ($x - ($x % $y)) / $y;
- }
- }
|