123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- ;;; The SRFI-32 sort package -- quick sort -*- Scheme -*-
- ;;; Copyright (c) 2002 by Olin Shivers.
- ;;; This code is open-source; see the end of the file for porting and
- ;;; more copyright information.
- ;;; Olin Shivers 2002/7.
- ;;; (quick-sort < v [start end]) -> vector
- ;;; (quick-sort! < v [start end]) -> unspecific
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; The algorithm is a standard quicksort, but the partition loop is fancier,
- ;;; arranging the vector into a left part that is <, a middle region that is
- ;;; =, and a right part that is > the pivot. Here's how it is done:
- ;;; The partition loop divides the range being partitioned into five
- ;;; subranges:
- ;;; =======<<<<<<<<<?????????>>>>>>>=======
- ;;; where = marks a value that is equal the pivot, < marks a value that
- ;;; is less than the pivot, ? marks a value that hasn't been scanned, and
- ;;; > marks a value that is greater than the pivot. Let's consider the
- ;;; left-to-right scan. If it checks a ? value that is <, it keeps scanning.
- ;;; If the ? value is >, we stop the scan -- we are ready to start the
- ;;; right-to-left scan and then do a swap. But if the rightward scan checks
- ;;; a ? value that is =, we swap it *down* to the end of the initial chunk
- ;;; of ====='s -- we exchange it with the leftmost < value -- and then
- ;;; continue our rightward scan. The leftwards scan works in a similar
- ;;; fashion, scanning past > elements, stopping on a < element, and swapping
- ;;; up = elements. When we are done, we have a picture like this
- ;;; ========<<<<<<<<<<<<>>>>>>>>>>=========
- ;;; Then swap the = elements up into the middle of the vector to get
- ;;; this:
- ;;; <<<<<<<<<<<<=================>>>>>>>>>>
- ;;; Then recurse on the <'s and >'s. Work out all the tricky little
- ;;; boundary cases, and you're done.
- ;;;
- ;;; Other tricks:
- ;;; - This quicksort also makes some effort to pick the pivot well -- it uses
- ;;; the median of three elements as the partition pivot, so pathological n^2
- ;;; run time is much rarer (but not eliminated completely). If you really
- ;;; wanted to get fancy, you could use a random number generator to choose
- ;;; pivots. The key to this trick is that you only need to pick one random
- ;;; number for each *level* of recursion -- i.e. you only need (lg n) random
- ;;; numbers.
- ;;; - After the partition, we *recurse* on the smaller of the two pending
- ;;; regions, then *tail-recurse* (iterate) on the larger one. This guarantees
- ;;; we use no more than lg(n) stack frames, worst case.
- ;;; - There are two ways to finish off the sort.
- ;;; A Recurse down to regions of size 10, then sort each such region using
- ;;; insertion sort.
- ;;; B Recurse down to regions of size 10, then sort *the entire vector*
- ;;; using insertion sort.
- ;;; We do A. Each choice has a cost. Choice A has more overhead to invoke
- ;;; all the separate insertion sorts -- choice B only calls insertion sort
- ;;; once. But choice B will call the comparison function *more times* --
- ;;; it will unnecessarily compare elt 9 of one segment to elt 0 of the
- ;;; following segment. The overhead of choice A is linear in the length
- ;;; of the vector, but *otherwise independent of the algorithm's parameters*.
- ;;; I.e., it's a *fixed*, *small* constant factor. The cost of the extra
- ;;; comparisons made by choice B, however, is dependent on an externality:
- ;;; the comparison function passed in by the client. This can be made
- ;;; arbitrarily bad -- that is, the constant factor *isn't* fixed by the
- ;;; sort algorithm; instead, it's determined by the comparison function.
- ;;; If your comparison function is very, very slow, you want to eliminate
- ;;; every single one that you can. Choice A limits the potential badness,
- ;;; so that is what we do.
- (define (vector-quick-sort! < v . maybe-start+end)
- (call-with-values
- (lambda () (vector-start+end v maybe-start+end))
- (lambda (start end)
- (%quick-sort! < v start end))))
- (define (vector-quick-sort < v . maybe-start+end)
- (call-with-values
- (lambda () (vector-start+end v maybe-start+end))
- (lambda (start end)
- (let ((ans (make-vector (- end start))))
- (vector-portion-copy! ans v start end)
- (%quick-sort! < ans 0 (- end start))
- ans))))
- ;;; %QUICK-SORT is not exported.
- ;;; Preconditions:
- ;;; V vector
- ;;; START END fixnums
- ;;; 0 <= START, END <= (vector-length V)
- ;;; If these preconditions are ensured by the cover functions, you
- ;;; can safely change this code to use unsafe fixnum arithmetic and vector
- ;;; indexing ops, for *huge* speedup.
- ;;;
- ;;; We bail out to insertion sort for small ranges; feel free to tune the
- ;;; crossover -- it's just a random guess. If you don't have the insertion
- ;;; sort routine, just kill that branch of the IF and change the recursion
- ;;; test to (< 1 (- r l)) -- the code is set up to work that way.
- (define (%quick-sort! elt< v start end)
- ;; Swap the N outer pairs of the range [l,r).
- (define (swap l r n)
- (if (> n 0)
- (let ((x (vector-ref v l))
- (r-1 (- r 1)))
- (vector-set! v l (vector-ref v r-1))
- (vector-set! v r-1 x)
- (swap (+ l 1) r-1 (- n 1)))))
- ;; Choose the median of V[l], V[r], and V[middle] for the pivot.
- (define (median v1 v2 v3)
- (call-with-values
- (lambda () (if (elt< v1 v2) (values v1 v2) (values v2 v1)))
- (lambda (little big)
- (if (elt< big v3)
- big
- (if (elt< little v3) v3 little)))))
- (let recur ((l start) (r end)) ; Sort the range [l,r).
- (if (< 10 (- r l)) ; Ten: the gospel according to Sedgewick.
- (let ((pivot (median (vector-ref v l)
- (vector-ref v (quotient (+ l r) 2))
- (vector-ref v (- r 1)))))
- ;; Everything in these loops is driven by the invariants expressed
- ;; in the little pictures & the corresponding l,i,j,k,m,r indices
- ;; and the associated ranges.
- ;; =======<<<<<<<<<?????????>>>>>>>=======
- ;; l i j k m r
- ;; [l,i) [i,j) [j,k] (k,m] (m,r)
- (letrec ((lscan (lambda (i j k m) ; left-to-right scan
- (let lp ((i i) (j j))
- (if (> j k)
- (done i j m)
- (let ((x (vector-ref v j)))
- (cond ((elt< x pivot) (lp i (+ j 1)))
- ((elt< pivot x) (rscan i j k m))
- (else ; Equal
- (if (< i j)
- (begin (vector-set! v j (vector-ref v i))
- (vector-set! v i x)))
- (lp (+ i 1) (+ j 1)))))))))
- ;; =======<<<<<<<<<>????????>>>>>>>=======
- ;; l i j k m r
- ;; [l,i) [i,j) j (j,k] (k,m] (m,r)
- (rscan (lambda (i j k m) ; right-to-left scan
- (let lp ((k k) (m m))
- (if (<= k j)
- (done i j m)
- (let* ((x (vector-ref v k)))
- (cond ((elt< pivot x) (lp (- k 1) m))
- ((elt< x pivot) ; Swap j & k & lscan.
- (vector-set! v k (vector-ref v j))
- (vector-set! v j x)
- (lscan i (+ j 1) (- k 1) m))
- (else ; x=pivot
- (if (< k m)
- (begin (vector-set! v k (vector-ref v m))
- (vector-set! v m x)))
- (lp (- k 1) (- m 1)))))))))
- ;; =======<<<<<<<<<<<<<>>>>>>>>>>>=======
- ;; l i j m r
- ;; [l,i) [i,j) [j,m] (m,r)
- (done (lambda (i j m)
- (let ((num< (- j i))
- (num> (+ 1 (- m j)))
- (num=l (- i l))
- (num=r (- (- r m) 1)))
- (swap l j (min num< num=l)) ; Swap ='s into
- (swap j r (min num> num=r)) ; the middle.
- ;; Recur on the <'s and >'s. Recurring on the
- ;; smaller range and iterating on the bigger
- ;; range ensures O(lg n) stack frames, worst case.
- (cond ((<= num< num>)
- (recur l (+ l num<))
- (recur (- r num>) r))
- (else
- (recur (- r num>) r)
- (recur l (+ l num<))))))))
- (let ((r-1 (- r 1)))
- (lscan l l r-1 r-1))))
- ;; Small segment => punt to insert sort.
- ;; Use the dangerous subprimitive.
- (%vector-insert-sort! elt< v l r))))
|