123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- ; Part of Scheme 48 1.9. See file COPYING for notices and license.
- ; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber
- ; Rectangular complex arithmetic built on real arithmetic.
- (define-extended-number-type <recnum> (<complex>)
- (make-recnum real imag)
- recnum?
- (real recnum-real-part)
- (imag recnum-imag-part))
- (define (rectangulate x y) ; Assumes (eq? (exact? x) (exact? y))
- (if (= y 0)
- x
- (make-recnum x y)))
- (define (rectangular-real-part z)
- (if (recnum? z)
- (recnum-real-part z)
- (real-part z)))
- (define (rectangular-imag-part z)
- (if (recnum? z)
- (recnum-imag-part z)
- (imag-part z)))
- (define (rectangular+ a b)
- (rectangulate (+ (rectangular-real-part a) (rectangular-real-part b))
- (+ (rectangular-imag-part a) (rectangular-imag-part b))))
- (define (rectangular- a b)
- (rectangulate (- (rectangular-real-part a) (rectangular-real-part b))
- (- (rectangular-imag-part a) (rectangular-imag-part b))))
- (define (rectangular* a b)
- (let ((a1 (rectangular-real-part a))
- (a2 (rectangular-imag-part a))
- (b1 (rectangular-real-part b))
- (b2 (rectangular-imag-part b)))
- (rectangulate (- (* a1 b1) (* a2 b2))
- (+ (* a1 b2) (* a2 b1)))))
- (define (rectangular/ a b)
- (let ((a1 (rectangular-real-part a))
- (a2 (rectangular-imag-part a))
- (b1 (rectangular-real-part b))
- (b2 (rectangular-imag-part b)))
- (let ((d (+ (* b1 b1) (* b2 b2))))
- (rectangulate (/ (+ (* a1 b1) (* a2 b2)) d)
- (/ (- (* a2 b1) (* a1 b2)) d)))))
- (define (rectangular= a b)
- (let ((a1 (rectangular-real-part a))
- (a2 (rectangular-imag-part a))
- (b1 (rectangular-real-part b))
- (b2 (rectangular-imag-part b)))
- (and (= a1 b1) (= a2 b2))))
- ; Methods
- (define-method &complex? ((z <recnum>)) #t)
- (define-method &real-part ((z <recnum>)) (recnum-real-part z))
- (define-method &imag-part ((z <recnum>)) (recnum-imag-part z))
- (define-method &magnitude ((z <recnum>))
- (let ((r (recnum-real-part z))
- (i (recnum-imag-part z)))
- (sqrt (+ (* r r) (* i i)))))
- (define-method &angle ((z <recnum>))
- (atan (recnum-imag-part z)
- (recnum-real-part z)))
- ; Methods on complexes in terms of real-part and imag-part
- (define-method &exact? ((z <recnum>))
- (exact? (recnum-real-part z)))
- (define-method &inexact->exact ((z <recnum>))
- (make-recnum (inexact->exact (recnum-real-part z))
- (inexact->exact (recnum-imag-part z))))
- (define-method &exact->inexact ((z <recnum>))
- (make-recnum (exact->inexact (recnum-real-part z))
- (exact->inexact (recnum-imag-part z))))
- (define (define-recnum-method mtable proc)
- (define-method mtable ((m <recnum>) (n <complex>)) (proc m n))
- (define-method mtable ((m <complex>) (n <recnum>)) (proc m n)))
- (define-recnum-method &+ rectangular+)
- (define-recnum-method &- rectangular-)
- (define-recnum-method &* rectangular*)
- (define-recnum-method &/ rectangular/)
- (define-recnum-method &= rectangular=)
- (define-method &sqrt ((n <real>))
- (if (< n 0)
- (make-rectangular 0 (sqrt (- 0 n)))
- (next-method))) ; not that we have to
- (define-method &sqrt ((z <recnum>))
- (exp (/ (log z) 2)))
- (define plus-i (make-recnum 0 1)) ; we can't read +i yet
- (define minus-i (make-recnum 0 -1))
- (define-method &exp ((z <recnum>))
- (let ((i (imag-part z)))
- (* (exp (real-part z))
- (+ (cos i) (* plus-i (sin i))))))
- (define-method &log ((z <recnum>))
- (+ (log (magnitude z)) (* plus-i (angle z))))
- (define pi (delay (* 2 (asin 1)))) ; can't compute at build time
- (define-method &log ((n <real>))
- (if (< n 0)
- (make-rectangular (log (- 0 n)) (force pi))
- (next-method)))
- (define-method &sin ((c <recnum>))
- (let ((i-c (* c plus-i)))
- (/ (- (exp i-c)
- (exp (- 0 i-c)))
- (* 2 plus-i))))
- (define-method &cos ((c <recnum>))
- (let ((i-c (* c plus-i)))
- (/ (+ (exp i-c)
- (exp (- 0 i-c)))
- 2)))
- (define-method &tan ((c <recnum>))
- (/ (sin c) (cos c)))
- (define-method &asin ((c <recnum>))
- (* minus-i
- (log (+ (* c plus-i)
- (sqrt (- 1 (* c c)))))))
- (define-method &acos ((c <recnum>))
- (* minus-i
- (log (+ c
- (* plus-i (sqrt (- 1 (* c c))))))))
- ; kludge; we can't read floating point yet
- (define infinity (delay (expt (exact->inexact 2) (exact->inexact 1500))))
- (define-method &atan1 ((c <recnum>))
- (if (or (= c plus-i)
- (= c minus-i))
- (- 0 (force infinity))
- (* plus-i
- (/ (log (/ (+ plus-i c)
- (+ plus-i (- 0 c))))
- 2))))
- ; Gleep! Can we do quotient and remainder on Gaussian integers?
- ; Can we do numerator and denominator on complex rationals?
- (define-method &number->string ((z <recnum>) radix)
- (let ((x (real-part z))
- (y (imag-part z)))
- (let ((r (number->string x radix))
- (i (number->string (abs y) radix))
- (& (if (< y 0) "-" "+")))
- (if (and (inexact? y) ;gross
- (char=? (string-ref i 0) #\#))
- (string-append (if (char=? (string-ref r 0) #\#)
- ""
- "#i")
- r &
- (substring i 2 (string-length i))
- "i")
- (string-append r & i "i")))))
- (define-method &make-rectangular ((x <real>) (y <real>))
- (if (eq? (exact? x) (exact? y))
- (rectangulate x y)
- (rectangulate (exact->inexact x) (exact->inexact y))))
- (define-method &make-polar ((x <real>) (y <real>))
- (rectangulate (* x (cos y)) (* x (sin y))))
|