example.html 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. <!doctype html>
  2. <html lang="en">
  3. <head>
  4. <meta charset="utf-8">
  5. <meta name="author" content="Eemeli Blåsten">
  6. <title>Hermite functions</title>
  7. <!-- Set viewport to device's resolution and initial zoom level -->
  8. <meta name="viewport" content="width=device-width, initial-scale=1.0">
  9. <!-- Favicon: the small icon in browser tabs and history -->
  10. <link rel="shortcut icon" type="image/x-icon" href="pics/favicon.ico" />
  11. <!-- CSS style sheet -->
  12. <link rel="stylesheet" href="CSSJS/lettus.css">
  13. <!-- Configure MathJax -->
  14. <script src="CSSJS/lettus_conf_mj.js"></script>
  15. <!-- Typeset MathJax formulas and number theorems etc. -->
  16. <script src="CSSJS/lettus_typeset.js"></script>
  17. <!-- Latex macros -->
  18. \(
  19. \newcommand{\abs}[1]{{\left\lvert #1 \right\rvert}}
  20. \newcommand{\norm}[1]{{\left\lVert #1 \right\rVert}}
  21. \newcommand{\supp}{\operatorname{supp}}
  22. \newcommand{\C}{\mathbb{C}}
  23. \newcommand{\R}{\mathbb{R}}
  24. \newcommand{\Z}{\mathbb{Z}}
  25. \newcommand{\N}{\mathbb{N}}
  26. \newcommand{\D}{\mathscr{D}}
  27. \newcommand{\S}{\mathscr{S}}
  28. \newcommand{\F}{\mathscr{F}}
  29. \)
  30. </head>
  31. <body class="content">
  32. <p>Test MJ scaling and font: <i>u$u$i$i$f$f$</i></p>
  33. <p>Test ümlauts, first in the current font (normal, umlaut), then using
  34. in mathmode normal, using <code>\ddot</code> and <code>\"</code>:
  35. <i>
  36. uü$u\ddot u\"u$,
  37. aä$a\ddot a\"a$,
  38. oö$o\ddot o\"o$,
  39. aå$a\phantom{a}\r{a}$
  40. </i></p>
  41. <a href="http://www.gnu.org">GNU project</a>
  42. <div class="theorem" data-nbr="A" id="ttt"><span>a span</span></div>
  43. <div class="theorem" data-counters="2"><p>a paragraph</p></div>
  44. <div class="theorem">No enclosing tags!<p>a paragraph</p></div>
  45. <div class="theorem" data-nbr="B"><span>Enclosed in span.</span><p>a paragraph</p></div>
  46. <div class="theorem"><span></span><p>an empty span before this &lt;p&gt;</p></div>
  47. <div class="theorem" data-counters="2"></div>
  48. <div class="lemma">The thm above is completely empty</div>
  49. <div class="corollary"><span>span</span></div>
  50. <div class="proposition" data-counters="2"><p>paragraph</p></div>
  51. <div class="conjecture"><p>paragraph</p></div>
  52. <div class="definition" data-counters="2"><p>paragraph</p></div>
  53. <div class="remark"><p>paragraph</p></div>
  54. <div class="proof">
  55. <p>
  56. These three sentences are a paragraph. According to <a
  57. href="#ttt">Theorem</a> we have it. Or simply by <a href="#ttt"></a>
  58. </p>
  59. </div>
  60. <h1>Basics of the Hermite functions and transform</h1>
  61. <footer>
  62. <small>
  63. <pre> Copyright (C) 2015-2018 Eemeli Blåsten.
  64. Permission is granted to copy, distribute and/or modify this document
  65. under the terms of the GNU Free Documentation License, Version 1.3
  66. or any later version published by the Free Software Foundation;
  67. with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
  68. A copy of the license is included in the section entitled &quot;GNU
  69. Free Documentation License&quot;.
  70. </pre>
  71. </small>
  72. </footer>
  73. <div class="motivation">
  74. <p>
  75. The reason to have this CRAZY document is just to try all the
  76. different HTML, CSS and JavaScript features.
  77. </p>
  78. </div>
  79. <span id="focusHere"></span>
  80. <p>
  81. Here is a try for citing an offline reference: <a
  82. href="#articleTry"></a>, and with something more descriptive than a
  83. simple number: Blåsten, Meikäläinen<a href="#articleTry"></a>. In
  84. particular see <a href="#articleTry">Chapter II</a>. Note that above
  85. <q>Blåsten, Meikäläinen</q> is currently not part of the anchor. If it
  86. was, then it would display like <q>Chapter II</q> above.
  87. </p>
  88. <section data-counters="1">
  89. <h2>Hermite functions</h2>
  90. <p>
  91. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ligula
  92. lorem, rhoncus vel hendrerit a, varius a turpis. Praesent in mauris
  93. non ex vehicula vestibulum sit amet in nulla. Morbi elementum justo
  94. vestibulum commodo elementum. Aenean sed gravida nulla. Fusce
  95. faucibus, justo sed porta elementum, turpis nunc tempus urna, a
  96. tincidunt elit magna non lacus. Fusce ut arcu congue, molestie erat
  97. sed, ultricies elit. Fusce a interdum elit. Etiam pharetra vestibulum
  98. diam malesuada euismod. Nulla non vestibulum purus. Fusce semper lorem
  99. enim, sed lobortis ex interdum blandit. Proin a dapibus augue, non
  100. venenatis magna. Maecenas est diam, laoreet eu porta ut, vulputate nec
  101. purus.
  102. </p>
  103. <p>
  104. Vestibulum at iaculis risus. Etiam consectetur ornare ligula quis
  105. tincidunt. Nulla ultricies felis a posuere interdum. Quisque interdum
  106. neque eu auctor ornare. Curabitur commodo, mi non tincidunt dignissim,
  107. ligula lectus ultrices elit, in consectetur ex augue a nibh. Aenean
  108. ornare enim pulvinar semper suscipit. Mauris facilisis nisl ligula,
  109. eget tempus nisl egestas eget. Aliquam erat volutpat. Aliquam aliquet
  110. fermentum tincidunt. Nulla lorem nisl, semper in imperdiet nec,
  111. gravida quis arcu. Duis euismod interdum odio, eget fermentum felis
  112. eleifend eu. Integer cursus posuere pulvinar.
  113. </p>
  114. <p>
  115. Ut porta dignissim mi ac rhoncus. Ut in turpis tortor. Quisque vel
  116. aliquet mi, sed elementum metus. Lorem ipsum dolor sit amet,
  117. consectetur adipiscing elit. Etiam mauris neque, vestibulum at posuere
  118. eu, dignissim nec nisl. Nullam ullamcorper ipsum et risus pretium, ac
  119. cursus mi efficitur. Aenean vel fringilla justo, nec dignissim justo.
  120. </p>
  121. <p>
  122. An unordered list:
  123. <ul>
  124. <li>asdf</li>
  125. <li>faeifs</li>
  126. <li>fewafwa</li>
  127. </ul>
  128. </p>
  129. <p>
  130. An ordered list:
  131. <ol>
  132. <li>asdf</li>
  133. <li>faeifs</li>
  134. <li>fewafwa</li>
  135. </ol>
  136. </p>
  137. <p>
  138. A description list:
  139. <dl>
  140. <dt>aasdaasdadssdf</dt>
  141. <dd>adaw dad wad wad wdwa daw dwaw dad wa</dd>
  142. <dt>faeidawdadsfs</dt>
  143. <dd>lijfes s fesi fhslkjadf wijasd<dd>
  144. <dt>fewafwadwwda</dt>
  145. <dd>fdwalidaw lidaw ijalw dwa ldwijald ja</dd>
  146. <dt>adaliwjd</dt>
  147. <dt>ijwefoiewf</dt>
  148. </dl>
  149. </p>
  150. <p>
  151. The following theorem, <a href="#basics">Theorem</a>, is of utmost
  152. importance. But don't forget the other stuff in the second <a
  153. href="example2.html">file</a>. Namely <a
  154. href="example2.html#corolla">AA</a> and for example <a
  155. href="example2.html#eq1">AA</a>, <a
  156. href="example2.html#cEquation">AA</a> and <a
  157. href="example2.html#thm1">AA</a>. Here is a link pretending to be in
  158. this text: <a href="#nothere">link</a>.
  159. </p>
  160. <div class="theorem" title="Basic identities" id="basics" data-counters="2">
  161. <p>
  162. Let $\psi_\alpha$, $\alpha\in\N$, be Hermite functions. Then
  163. \[
  164. \psi_\alpha'(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) -
  165. \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x)
  166. \]
  167. and
  168. \[
  169. x\psi_\alpha(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) +
  170. \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x).
  171. \]
  172. Moreover the Hermite functions are eigenfunctions to the quantum
  173. mechanical oscillator
  174. \begin{equation}
  175. \label{eigenFunction}
  176. (x^2 - \partial_x^2) \psi_\alpha(x) = (2\alpha + 1)\psi_\alpha(x).
  177. \end{equation}
  178. </p>
  179. </div>
  180. </section>
  181. <section data-counters="1">
  182. <h2>Hermite transform</h2>
  183. <p>
  184. In this section we will first show that the Hermite functions form an
  185. orthonormal set in $L^2(\R)$. After that we will show that the set is
  186. complete and that leads to the Hermite transform.
  187. </p>
  188. <div class="lemma" data-counters="2" id="orthonormalSequenceLemma">
  189. <p>
  190. Let $\psi_\alpha:\R\to\R$ be Hermite functions. Then
  191. \[
  192. \int_{-\infty}^\infty \psi_\alpha(x)\psi_\beta(x) dx =
  193. \delta_{\alpha\beta}
  194. \]
  195. i.e. the sequence $(\psi_\alpha)_{\alpha=0}^\infty$ is orthonormal in
  196. $L^2(\R)$.
  197. </p>
  198. </div>
  199. <div class="proof">
  200. <p>
  201. Note first the identity $(x+\partial_x)(x-\partial_x) =
  202. (x^2-\partial_x^2) + 1$. Combine it with the fact that $\psi_n$ is
  203. an eigenfunction for the quantum oscillator \eqref{eigenFunction} to
  204. get
  205. \[
  206. (x+\partial_x)(x-\partial_x)\psi_n = 2(n+1)\psi_n
  207. \]
  208. for any $n\in\N$. Note also that the transpose of $x-\partial_x$ in
  209. the $L^2$ inner product is $x+\partial_x$.
  210. </p>
  211. <p>
  212. Hence we get
  213. \begin{align*}
  214. &\int \psi_\alpha \psi_\beta dx = \frac{1}{2\sqrt{\alpha\beta}}
  215. \int (x-\partial_x)\psi_{\alpha-1}(x+\partial_x)\psi_{\beta-1} dx
  216. \\ &\qquad = \frac{1}{2\sqrt{\alpha\beta}} \int \psi_{\alpha-1}
  217. (x+\partial_x)(x-\partial_x)\psi_{\beta-1} \\ &\qquad =
  218. \sqrt{\frac{\beta}{\alpha}} \int \psi_{\alpha-1}\psi_{\beta-1} dx.
  219. \end{align*}
  220. </p>
  221. <p>
  222. Using the previous equation we see that
  223. \[
  224. \int \psi_\alpha \psi_\alpha dx = \int \psi_0^2 dx =
  225. \pi^{-1/2}\int_{-\infty}^\infty e^{-x^2} dx = 1.
  226. \]
  227. </p>
  228. <p>
  229. If, on the other hand for example $\alpha\lt\beta$, then
  230. \[
  231. \int\psi_\alpha\psi_\beta dx = \ldots = c_{\alpha,\beta} \int
  232. \psi_0\psi_{\beta-\alpha} dx = c'_{\alpha,\beta}
  233. \int_{-\infty}^\infty \partial_x^{\beta-\alpha} e^{-x^2} dx = 0
  234. \]
  235. since all the derivatives of Gaussians vanish at infinity.
  236. </p>
  237. </div>
  238. <div class="corollary" data-counters="2">
  239. <p>
  240. Let $\mathscr{O}=\{x, \partial_x\}$ be the set of operators containing
  241. the multiplication by $x$ and differentiation by $x$ operators. Let
  242. $L^0_\alpha = \{\psi_\alpha\}$ and
  243. \[
  244. L^{k+1}_\alpha = \{ Sf \mid S\in\mathscr{O}, \, f\in L^k_\alpha \}.
  245. \]
  246. Then
  247. \[
  248. \norm{f}_{L^2(\R)} \leq 2^{k/2} \prod_{\ell=1}^k \sqrt{\alpha+\ell}
  249. = \sqrt{ 2^k \frac{(a+k)!}{a!} }
  250. \]
  251. for any $f \in L^k_\alpha$.
  252. </p>
  253. </div>
  254. <div class="proof">
  255. <p>
  256. The sequence $(\psi_\alpha)_\alpha$ is orthonormal by <a
  257. href=#orthonormalSequenceLemma>Lemma </a>. Hence we have
  258. $\norm{\psi_\alpha}_2=1$. Assume that the claim is true for
  259. $L^k_\alpha$ for any $\alpha\in\N$. We will prove it for
  260. $L^{k+1}_\alpha$. Let that $f\in L^k_\alpha$. Then there are
  261. operators $S_1,\ldots,S_k \in \mathscr{O}$ such that $f =
  262. S_1S_2\cdots S_k \psi_\alpha$.
  263. </p>
  264. <p>
  265. Consider the case $S_k = \partial_x$. Let $O\in\mathscr{O}$ and use
  266. one of the basic identities to get
  267. \begin{align*}
  268. &\norm{Of}_2 = \norm{OS_1\cdots S_{k-1} \partial_x \psi_\alpha}_2
  269. \\ &\qquad = \norm{OS_1\cdots S_{k-1} \left(
  270. \sqrt{\tfrac{\alpha}{2}}\psi_{\alpha-1} -
  271. \sqrt{\tfrac{\alpha+1}{2}}\psi_{\alpha+1}\right)}_2 \\ &\qquad
  272. \leq \sqrt{\tfrac{\alpha}{2}} \norm{OS_1\cdots S_{k-1}
  273. \psi_{\alpha-1}}_2 + \sqrt{\tfrac{\alpha+1}{2}} \norm{OS_1\cdots
  274. S_{k-1} \psi_{\alpha+1}}_2 \\ &\qquad \leq
  275. \sqrt{\tfrac{\alpha+1}{2}} 2^{k/2} \left( \prod_{\ell=1}^k
  276. \sqrt{\alpha-1+\ell} + \prod_{\ell=1}^k \sqrt{\alpha+1+\ell}
  277. \right) \\ &\qquad \leq 2^{(k-1)/2} \sqrt{\alpha+1} \cdot 2
  278. \prod_{\ell=1}^k\sqrt{\alpha+1+\ell} \\ &\qquad \leq 2^{(k+1)/2}
  279. \prod_{\ell=1}^{k+1} \sqrt{\alpha+\ell}
  280. \end{align*}
  281. since $OS_1\cdots S_{k-1} \psi_{\alpha-1}$ and $OS_1\cdots S_{k-1}
  282. \psi_{\alpha+1}$ are in $L^k_{\alpha-1}$ and $L^k_{\alpha+1}$,
  283. respectively. The same kind of deduction works in the case when
  284. $S_k$ is multiplication by $x$. Hence the claim follows by
  285. induction.
  286. </p>
  287. </div>
  288. </section>
  289. <footer id="bibliography">
  290. <h2>References</h2>
  291. <h3>Offline sources</h3>
  292. <ul class="referenceList">
  293. <li id="articleTry" class="reference">
  294. <span class="ref-authors">E. Blåsten</span> and
  295. <span class="ref-authors">M. Meikäläinen:</span>
  296. <span class="ref-title">A proof of the Riemann conjecture,</span>
  297. <span class="ref-journal">Annals of Mathematics,</span>
  298. <span class="ref-volume">23,</span>
  299. <span class="ref-issue">2</span>
  300. <span class="ref-year">(2069),</span>
  301. <span class="ref-pages">1&ndash;503.</span>
  302. </li>
  303. </ul>
  304. </footer>
  305. </body>