123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762 |
- from __future__ import annotations
- import re
- import asyncio
- import uuid
- import json
- import base64
- import time
- import requests
- from copy import copy
- try:
- import nodriver
- from nodriver.cdp.network import get_response_body
- has_nodriver = True
- except ImportError:
- has_nodriver = False
- try:
- from platformdirs import user_config_dir
- has_platformdirs = True
- except ImportError:
- has_platformdirs = False
- from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
- from ...typing import AsyncResult, Messages, Cookies, ImageType, AsyncIterator
- from ...requests.raise_for_status import raise_for_status
- from ...requests.aiohttp import StreamSession
- from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format
- from ...errors import MissingAuthError, ResponseError
- from ...providers.response import BaseConversation, FinishReason, SynthesizeData
- from ..helper import format_cookies
- from ..openai.har_file import get_request_config, NoValidHarFileError
- from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url
- from ..openai.proofofwork import generate_proof_token
- from ..openai.new import get_requirements_token
- from ... import debug
- DEFAULT_HEADERS = {
- "accept": "*/*",
- "accept-encoding": "gzip, deflate, br, zstd",
- "accept-language": "en-US,en;q=0.5",
- "referer": "https://chatgpt.com/",
- "sec-ch-ua": "\"Brave\";v=\"123\", \"Not:A-Brand\";v=\"8\", \"Chromium\";v=\"123\"",
- "sec-ch-ua-mobile": "?0",
- "sec-ch-ua-platform": "\"Windows\"",
- "sec-fetch-dest": "empty",
- "sec-fetch-mode": "cors",
- "sec-fetch-site": "same-origin",
- "sec-gpc": "1",
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
- }
- class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
- """A class for creating and managing conversations with OpenAI chat service"""
- label = "OpenAI ChatGPT"
- url = "https://chatgpt.com"
- working = True
- needs_auth = True
- supports_gpt_4 = True
- supports_message_history = True
- supports_system_message = True
- default_model = "auto"
- default_vision_model = "gpt-4o"
- fallback_models = ["auto", "gpt-4", "gpt-4o", "gpt-4o-mini", "gpt-4o-canmore", "o1-preview", "o1-mini"]
- vision_models = fallback_models
- image_models = fallback_models
- _api_key: str = None
- _headers: dict = None
- _cookies: Cookies = None
- _expires: int = None
- @classmethod
- def get_models(cls):
- if not cls.models:
- try:
- response = requests.get(f"{cls.url}/backend-anon/models")
- response.raise_for_status()
- data = response.json()
- cls.models = [model.get("slug") for model in data.get("models")]
- except Exception:
- cls.models = cls.fallback_models
- return cls.models
- @classmethod
- async def create(
- cls,
- prompt: str = None,
- model: str = "",
- messages: Messages = [],
- action: str = "next",
- **kwargs
- ) -> Response:
- """
- Create a new conversation or continue an existing one
-
- Args:
- prompt: The user input to start or continue the conversation
- model: The name of the model to use for generating responses
- messages: The list of previous messages in the conversation
- history_disabled: A flag indicating if the history and training should be disabled
- action: The type of action to perform, either "next", "continue", or "variant"
- conversation_id: The ID of the existing conversation, if any
- parent_id: The ID of the parent message, if any
- image: The image to include in the user input, if any
- **kwargs: Additional keyword arguments to pass to the generator
-
- Returns:
- A Response object that contains the generator, action, messages, and options
- """
- # Add the user input to the messages list
- if prompt is not None:
- messages.append({
- "role": "user",
- "content": prompt
- })
- generator = cls.create_async_generator(
- model,
- messages,
- return_conversation=True,
- **kwargs
- )
- return Response(
- generator,
- action,
- messages,
- kwargs
- )
- @classmethod
- async def upload_image(
- cls,
- session: StreamSession,
- headers: dict,
- image: ImageType,
- image_name: str = None
- ) -> ImageRequest:
- """
- Upload an image to the service and get the download URL
-
- Args:
- session: The StreamSession object to use for requests
- headers: The headers to include in the requests
- image: The image to upload, either a PIL Image object or a bytes object
-
- Returns:
- An ImageRequest object that contains the download URL, file name, and other data
- """
- # Convert the image to a PIL Image object and get the extension
- data_bytes = to_bytes(image)
- image = to_image(data_bytes)
- extension = image.format.lower()
- data = {
- "file_name": "" if image_name is None else image_name,
- "file_size": len(data_bytes),
- "use_case": "multimodal"
- }
- # Post the image data to the service and get the image data
- async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
- cls._update_request_args(session)
- await raise_for_status(response)
- image_data = {
- **data,
- **await response.json(),
- "mime_type": is_accepted_format(data_bytes),
- "extension": extension,
- "height": image.height,
- "width": image.width
- }
- # Put the image bytes to the upload URL and check the status
- async with session.put(
- image_data["upload_url"],
- data=data_bytes,
- headers={
- "Content-Type": image_data["mime_type"],
- "x-ms-blob-type": "BlockBlob"
- }
- ) as response:
- await raise_for_status(response)
- # Post the file ID to the service and get the download URL
- async with session.post(
- f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
- json={},
- headers=headers
- ) as response:
- cls._update_request_args(session)
- await raise_for_status(response)
- image_data["download_url"] = (await response.json())["download_url"]
- return ImageRequest(image_data)
- @classmethod
- async def get_default_model(cls, session: StreamSession, headers: dict):
- """
- Get the default model name from the service
-
- Args:
- session: The StreamSession object to use for requests
- headers: The headers to include in the requests
-
- Returns:
- The default model name as a string
- """
- if not cls.default_model:
- url = f"{cls.url}/backend-anon/models" if cls._api_key is None else f"{cls.url}/backend-api/models"
- async with session.get(url, headers=headers) as response:
- cls._update_request_args(session)
- if response.status == 401:
- raise MissingAuthError('Add a .har file for OpenaiChat' if cls._api_key is None else "Invalid api key")
- await raise_for_status(response)
- data = await response.json()
- if "categories" in data:
- cls.default_model = data["categories"][-1]["default_model"]
- return cls.default_model
- raise ResponseError(data)
- return cls.default_model
- @classmethod
- def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
- """
- Create a list of messages for the user input
-
- Args:
- prompt: The user input as a string
- image_response: The image response object, if any
-
- Returns:
- A list of messages with the user input and the image, if any
- """
- # Create a message object with the user role and the content
- messages = [{
- "author": {"role": message["role"]},
- "content": {"content_type": "text", "parts": [message["content"]]},
- "id": str(uuid.uuid4()),
- "create_time": int(time.time()),
- "id": str(uuid.uuid4()),
- "metadata": {"serialization_metadata": {"custom_symbol_offsets": []}}
- } for message in messages]
- # Check if there is an image response
- if image_request is not None:
- # Change content in last user message
- messages[-1]["content"] = {
- "content_type": "multimodal_text",
- "parts": [{
- "asset_pointer": f"file-service://{image_request.get('file_id')}",
- "height": image_request.get("height"),
- "size_bytes": image_request.get("file_size"),
- "width": image_request.get("width"),
- }, messages[-1]["content"]["parts"][0]]
- }
- # Add the metadata object with the attachments
- messages[-1]["metadata"] = {
- "attachments": [{
- "height": image_request.get("height"),
- "id": image_request.get("file_id"),
- "mimeType": image_request.get("mime_type"),
- "name": image_request.get("file_name"),
- "size": image_request.get("file_size"),
- "width": image_request.get("width"),
- }]
- }
- return messages
- @classmethod
- async def get_generated_image(cls, session: StreamSession, headers: dict, element: dict) -> ImageResponse:
- """
- Retrieves the image response based on the message content.
- This method processes the message content to extract image information and retrieves the
- corresponding image from the backend API. It then returns an ImageResponse object containing
- the image URL and the prompt used to generate the image.
- Args:
- session (StreamSession): The StreamSession object used for making HTTP requests.
- headers (dict): HTTP headers to be used for the request.
- line (dict): A dictionary representing the line of response that contains image information.
- Returns:
- ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
- Raises:
- RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
- """
- try:
- prompt = element["metadata"]["dalle"]["prompt"]
- file_id = element["asset_pointer"].split("file-service://", 1)[1]
- except Exception as e:
- raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}")
- try:
- async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
- cls._update_request_args(session)
- await raise_for_status(response)
- download_url = (await response.json())["download_url"]
- return ImageResponse(download_url, prompt)
- except Exception as e:
- raise RuntimeError(f"Error in downloading image: {e}")
- @classmethod
- async def delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str):
- """
- Deletes a conversation by setting its visibility to False.
- This method sends an HTTP PATCH request to update the visibility of a conversation.
- It's used to effectively delete a conversation from being accessed or displayed in the future.
- Args:
- session (StreamSession): The StreamSession object used for making HTTP requests.
- headers (dict): HTTP headers to be used for the request.
- conversation_id (str): The unique identifier of the conversation to be deleted.
- Raises:
- HTTPError: If the HTTP request fails or returns an unsuccessful status code.
- """
- async with session.patch(
- f"{cls.url}/backend-api/conversation/{conversation_id}",
- json={"is_visible": False},
- headers=headers
- ) as response:
- cls._update_request_args(session)
- ...
- @classmethod
- async def create_async_generator(
- cls,
- model: str,
- messages: Messages,
- proxy: str = None,
- timeout: int = 180,
- api_key: str = None,
- cookies: Cookies = None,
- auto_continue: bool = False,
- history_disabled: bool = False,
- action: str = "next",
- conversation_id: str = None,
- conversation: Conversation = None,
- parent_id: str = None,
- image: ImageType = None,
- image_name: str = None,
- return_conversation: bool = False,
- max_retries: int = 3,
- **kwargs
- ) -> AsyncResult:
- """
- Create an asynchronous generator for the conversation.
- Args:
- model (str): The model name.
- messages (Messages): The list of previous messages.
- proxy (str): Proxy to use for requests.
- timeout (int): Timeout for requests.
- api_key (str): Access token for authentication.
- cookies (dict): Cookies to use for authentication.
- auto_continue (bool): Flag to automatically continue the conversation.
- history_disabled (bool): Flag to disable history and training.
- action (str): Type of action ('next', 'continue', 'variant').
- conversation_id (str): ID of the conversation.
- parent_id (str): ID of the parent message.
- image (ImageType): Image to include in the conversation.
- return_conversation (bool): Flag to include response fields in the output.
- **kwargs: Additional keyword arguments.
- Yields:
- AsyncResult: Asynchronous results from the generator.
- Raises:
- RuntimeError: If an error occurs during processing.
- """
- await cls.login(proxy)
- async with StreamSession(
- proxy=proxy,
- impersonate="chrome",
- timeout=timeout
- ) as session:
- try:
- image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None
- except Exception as e:
- image_request = None
- debug.log("OpenaiChat: Upload image failed")
- debug.log(f"{e.__class__.__name__}: {e}")
- model = cls.get_model(model)
- if conversation is None:
- conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id)
- else:
- conversation = copy(conversation)
- if cls._api_key is None:
- auto_continue = False
- conversation.finish_reason = None
- while conversation.finish_reason is None:
- async with session.post(
- f"{cls.url}/backend-anon/sentinel/chat-requirements"
- if cls._api_key is None else
- f"{cls.url}/backend-api/sentinel/chat-requirements",
- json={"p": get_requirements_token(RequestConfig.proof_token) if RequestConfig.proof_token else None},
- headers=cls._headers
- ) as response:
- cls._update_request_args(session)
- await raise_for_status(response)
- chat_requirements = await response.json()
- need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
- need_arkose = chat_requirements.get("arkose", {}).get("required", False)
- chat_token = chat_requirements.get("token")
- if need_arkose and RequestConfig.arkose_token is None:
- await get_request_config(proxy)
- cls._create_request_args(RequestConfig,cookies, RequestConfig.headers)
- cls._set_api_key(RequestConfig.access_token)
- if RequestConfig.arkose_token is None:
- raise MissingAuthError("No arkose token found in .har file")
- if "proofofwork" in chat_requirements:
- proofofwork = generate_proof_token(
- **chat_requirements["proofofwork"],
- user_agent=cls._headers.get("user-agent"),
- proof_token=RequestConfig.proof_token
- )
- [debug.log(text) for text in (
- f"Arkose: {'False' if not need_arkose else RequestConfig.arkose_token[:12]+'...'}",
- f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
- f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
- )]
- data = {
- "action": action,
- "messages": None,
- "parent_message_id": conversation.message_id,
- "model": model,
- "paragen_cot_summary_display_override": "allow",
- "history_and_training_disabled": history_disabled and not auto_continue and not return_conversation,
- "conversation_mode": {"kind":"primary_assistant"},
- "websocket_request_id": str(uuid.uuid4()),
- "supported_encodings": ["v1"],
- "supports_buffering": True
- }
- if conversation.conversation_id is not None:
- data["conversation_id"] = conversation.conversation_id
- debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
- if action != "continue":
- messages = messages if conversation_id is None else [messages[-1]]
- data["messages"] = cls.create_messages(messages, image_request)
- headers = {
- **cls._headers,
- "accept": "text/event-stream",
- "content-type": "application/json",
- "openai-sentinel-chat-requirements-token": chat_token,
- }
- if RequestConfig.arkose_token:
- headers["openai-sentinel-arkose-token"] = RequestConfig.arkose_token
- if proofofwork is not None:
- headers["openai-sentinel-proof-token"] = proofofwork
- if need_turnstile and RequestConfig.turnstile_token is not None:
- headers['openai-sentinel-turnstile-token'] = RequestConfig.turnstile_token
- async with session.post(
- f"{cls.url}/backend-anon/conversation"
- if cls._api_key is None else
- f"{cls.url}/backend-api/conversation",
- json=data,
- headers=headers
- ) as response:
- cls._update_request_args(session)
- if response.status == 403 and max_retries > 0:
- max_retries -= 1
- debug.log(f"Retry: Error {response.status}: {await response.text()}")
- await asyncio.sleep(5)
- continue
- await raise_for_status(response)
- if return_conversation:
- history_disabled = False
- yield conversation
- async for line in response.iter_lines():
- async for chunk in cls.iter_messages_line(session, line, conversation):
- yield chunk
- if not history_disabled:
- yield SynthesizeData(cls.__name__, {
- "conversation_id": conversation.conversation_id,
- "message_id": conversation.message_id,
- "voice": "maple",
- })
- if auto_continue and conversation.finish_reason == "max_tokens":
- conversation.finish_reason = None
- action = "continue"
- await asyncio.sleep(5)
- else:
- break
- yield FinishReason(conversation.finish_reason)
- if history_disabled and auto_continue:
- await cls.delete_conversation(session, cls._headers, conversation.conversation_id)
- @classmethod
- async def iter_messages_chunk(
- cls,
- messages: AsyncIterator,
- session: StreamSession,
- fields: Conversation,
- ) -> AsyncIterator:
- async for message in messages:
- async for chunk in cls.iter_messages_line(session, message, fields):
- yield chunk
- @classmethod
- async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator:
- if not line.startswith(b"data: "):
- return
- elif line.startswith(b"data: [DONE]"):
- if fields.finish_reason is None:
- fields.finish_reason = "error"
- return
- try:
- line = json.loads(line[6:])
- except:
- return
- if isinstance(line, dict) and "v" in line:
- v = line.get("v")
- if isinstance(v, str) and fields.is_recipient:
- yield v
- elif isinstance(v, list) and fields.is_recipient:
- for m in v:
- if m.get("p") == "/message/content/parts/0":
- yield m.get("v")
- elif m.get("p") == "/message/metadata":
- fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
- break
- elif isinstance(v, dict):
- if fields.conversation_id is None:
- fields.conversation_id = v.get("conversation_id")
- debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
- m = v.get("message", {})
- fields.is_recipient = m.get("recipient") == "all"
- if fields.is_recipient:
- c = m.get("content", {})
- if c.get("content_type") == "multimodal_text":
- generated_images = []
- for element in c.get("parts"):
- if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer":
- generated_images.append(
- cls.get_generated_image(session, cls._headers, element)
- )
- for image_response in await asyncio.gather(*generated_images):
- yield image_response
- if m.get("author", {}).get("role") == "assistant":
- fields.message_id = v.get("message", {}).get("id")
- return
- if "error" in line and line.get("error"):
- raise RuntimeError(line.get("error"))
- @classmethod
- async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
- await cls.login()
- async with StreamSession(
- impersonate="chrome",
- timeout=900
- ) as session:
- async with session.get(
- f"{cls.url}/backend-api/synthesize",
- params=params,
- headers=cls._headers
- ) as response:
- await raise_for_status(response)
- async for chunk in response.iter_content():
- yield chunk
- @classmethod
- async def login(cls, proxy: str = None):
- if cls._expires is not None and cls._expires < time.time():
- cls._headers = cls._api_key = None
- try:
- await get_request_config(proxy)
- cls._create_request_args(RequestConfig.cookies, RequestConfig.headers)
- cls._set_api_key(RequestConfig.access_token)
- except NoValidHarFileError:
- if has_nodriver:
- await cls.nodriver_auth(proxy)
- else:
- raise
- @classmethod
- async def nodriver_auth(cls, proxy: str = None):
- if has_platformdirs:
- user_data_dir = user_config_dir("g4f-nodriver")
- else:
- user_data_dir = None
- debug.log(f"Open nodriver with user_dir: {user_data_dir}")
- browser = await nodriver.start(
- user_data_dir=user_data_dir,
- browser_args=None if proxy is None else [f"--proxy-server={proxy}"],
- )
- page = browser.main_tab
- def on_request(event: nodriver.cdp.network.RequestWillBeSent):
- if event.request.url == start_url or event.request.url.startswith(conversation_url):
- RequestConfig.access_request_id = event.request_id
- RequestConfig.headers = event.request.headers
- elif event.request.url in (backend_url, backend_anon_url):
- if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
- RequestConfig.proof_token = json.loads(base64.b64decode(
- event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode()
- ).decode())
- if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
- RequestConfig.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
- if "Authorization" in event.request.headers:
- RequestConfig.access_token = event.request.headers["Authorization"].split()[-1]
- elif event.request.url == arkose_url:
- RequestConfig.arkose_request = arkReq(
- arkURL=event.request.url,
- arkBx=None,
- arkHeader=event.request.headers,
- arkBody=event.request.post_data,
- userAgent=event.request.headers.get("user-agent")
- )
- await page.send(nodriver.cdp.network.enable())
- page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
- page = await browser.get(cls.url)
- try:
- if RequestConfig.access_request_id is not None:
- body = await page.send(get_response_body(RequestConfig.access_request_id))
- if isinstance(body, tuple) and body:
- body = body[0]
- if body:
- match = re.search(r'"accessToken":"(.*?)"', body)
- if match:
- RequestConfig.access_token = match.group(1)
- except KeyError:
- pass
- for c in await page.send(nodriver.cdp.network.get_cookies([cls.url])):
- RequestConfig.cookies[c.name] = c.value
- RequestConfig.user_agent = await page.evaluate("window.navigator.userAgent")
- await page.select("#prompt-textarea", 240)
- while True:
- if RequestConfig.proof_token:
- break
- await asyncio.sleep(1)
- await page.close()
- cls._create_request_args(RequestConfig.cookies, RequestConfig.headers, user_agent=RequestConfig.user_agent)
- cls._set_api_key(RequestConfig.access_token)
- @staticmethod
- def get_default_headers() -> dict:
- return {
- **DEFAULT_HEADERS,
- "content-type": "application/json",
- }
- @classmethod
- def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
- cls._headers = cls.get_default_headers() if headers is None else headers
- if user_agent is not None:
- cls._headers["user-agent"] = user_agent
- cls._cookies = {} if cookies is None else cookies
- cls._update_cookie_header()
- @classmethod
- def _update_request_args(cls, session: StreamSession):
- for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
- cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value
- cls._update_cookie_header()
- @classmethod
- def _set_api_key(cls, api_key: str):
- cls._api_key = api_key
- cls._expires = int(time.time()) + 60 * 60 * 4
- if api_key:
- cls._headers["authorization"] = f"Bearer {api_key}"
- @classmethod
- def _update_cookie_header(cls):
- cls._headers["cookie"] = format_cookies(cls._cookies)
- class Conversation(BaseConversation):
- """
- Class to encapsulate response fields.
- """
- def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None):
- self.conversation_id = conversation_id
- self.message_id = message_id
- self.finish_reason = finish_reason
- self.is_recipient = False
- class Response():
- """
- Class to encapsulate a response from the chat service.
- """
- def __init__(
- self,
- generator: AsyncResult,
- action: str,
- messages: Messages,
- options: dict
- ):
- self._generator = generator
- self.action = action
- self.is_end = False
- self._message = None
- self._messages = messages
- self._options = options
- self._fields = None
- async def generator(self) -> AsyncIterator:
- if self._generator is not None:
- self._generator = None
- chunks = []
- async for chunk in self._generator:
- if isinstance(chunk, Conversation):
- self._fields = chunk
- else:
- yield chunk
- chunks.append(str(chunk))
- self._message = "".join(chunks)
- if self._fields is None:
- raise RuntimeError("Missing response fields")
- self.is_end = self._fields.finish_reason == "stop"
- def __aiter__(self):
- return self.generator()
- async def get_message(self) -> str:
- await self.generator()
- return self._message
- async def get_fields(self) -> dict:
- await self.generator()
- return {
- "conversation_id": self._fields.conversation_id,
- "parent_id": self._fields.message_id
- }
- async def create_next(self, prompt: str, **kwargs) -> Response:
- return await OpenaiChat.create(
- **self._options,
- prompt=prompt,
- messages=await self.get_messages(),
- action="next",
- **await self.get_fields(),
- **kwargs
- )
- async def do_continue(self, **kwargs) -> Response:
- fields = await self.get_fields()
- if self.is_end:
- raise RuntimeError("Can't continue message. Message already finished.")
- return await OpenaiChat.create(
- **self._options,
- messages=await self.get_messages(),
- action="continue",
- **fields,
- **kwargs
- )
- async def create_variant(self, **kwargs) -> Response:
- if self.action != "next":
- raise RuntimeError("Can't create variant from continue or variant request.")
- return await OpenaiChat.create(
- **self._options,
- messages=self._messages,
- action="variant",
- **await self.get_fields(),
- **kwargs
- )
- async def get_messages(self) -> list:
- messages = self._messages
- messages.append({"role": "assistant", "content": await self.message()})
- return messages
|