123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- /*
- * Copyright (C) 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef WTF_MathExtras_h
- #define WTF_MathExtras_h
- #include <algorithm>
- #include <cmath>
- #include <float.h>
- #include <limits>
- #include <stdint.h>
- #include <stdlib.h>
- #include <wtf/StdLibExtras.h>
- #if OS(PSP2)
- #include <math.h>
- #endif
- #if OS(SOLARIS)
- #include <ieeefp.h>
- #endif
- #if OS(OPENBSD)
- #include <sys/types.h>
- #include <machine/ieee.h>
- #endif
- #if OS(QNX)
- // FIXME: Look into a way to have cmath import its functions into both the standard and global
- // namespace. For now, we include math.h since the QNX cmath header only imports its functions
- // into the standard namespace.
- #include <math.h>
- // These macros from math.h conflict with the real functions in the std namespace.
- #undef signbit
- #undef isnan
- #undef isinf
- #undef isfinite
- #endif
- #ifndef M_PI
- const double piDouble = 3.14159265358979323846;
- const float piFloat = 3.14159265358979323846f;
- #else
- const double piDouble = M_PI;
- const float piFloat = static_cast<float>(M_PI);
- #endif
- #ifndef M_PI_2
- const double piOverTwoDouble = 1.57079632679489661923;
- const float piOverTwoFloat = 1.57079632679489661923f;
- #else
- const double piOverTwoDouble = M_PI_2;
- const float piOverTwoFloat = static_cast<float>(M_PI_2);
- #endif
- #ifndef M_PI_4
- const double piOverFourDouble = 0.785398163397448309616;
- const float piOverFourFloat = 0.785398163397448309616f;
- #else
- const double piOverFourDouble = M_PI_4;
- const float piOverFourFloat = static_cast<float>(M_PI_4);
- #endif
- #if OS(DARWIN)
- // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
- inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
- #define ceil(x) wtf_ceil(x)
- #endif
- #if OS(SOLARIS)
- namespace std {
- #ifndef isfinite
- inline bool isfinite(double x) { return finite(x) && !isnand(x); }
- #endif
- #ifndef signbit
- inline bool signbit(double x) { return copysign(1.0, x) < 0; }
- #endif
- #ifndef isinf
- inline bool isinf(double x) { return !finite(x) && !isnand(x); }
- #endif
- } // namespace std
- #endif
- #if OS(OPENBSD)
- namespace std {
- #ifndef isfinite
- inline bool isfinite(double x) { return finite(x); }
- #endif
- #ifndef signbit
- inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
- #endif
- } // namespace std
- #endif
- #if COMPILER(MSVC)
- // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
- static double round(double num)
- {
- double integer = ceil(num);
- if (num > 0)
- return integer - num > 0.5 ? integer - 1.0 : integer;
- return integer - num >= 0.5 ? integer - 1.0 : integer;
- }
- static float roundf(float num)
- {
- float integer = ceilf(num);
- if (num > 0)
- return integer - num > 0.5f ? integer - 1.0f : integer;
- return integer - num >= 0.5f ? integer - 1.0f : integer;
- }
- inline long long llround(double num) { return static_cast<long long>(round(num)); }
- inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
- inline long lround(double num) { return static_cast<long>(round(num)); }
- inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
- inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
- #endif
- #if COMPILER(GCC) && OS(QNX)
- // The stdlib on QNX doesn't contain long abs(long). See PR #104666.
- inline long long abs(long num) { return labs(num); }
- #endif
- #if COMPILER(MSVC)
- // MSVC's math.h does not currently supply log2 or log2f.
- inline double log2(double num)
- {
- // This constant is roughly M_LN2, which is not provided by default on Windows.
- return log(num) / 0.693147180559945309417232121458176568;
- }
- inline float log2f(float num)
- {
- // This constant is roughly M_LN2, which is not provided by default on Windows.
- return logf(num) / 0.693147180559945309417232121458176568f;
- }
- #endif
- #if COMPILER(MSVC)
- // The 64bit version of abs() is already defined in stdlib.h which comes with VC10
- #if COMPILER(MSVC9_OR_LOWER)
- inline long long abs(long long num) { return _abs64(num); }
- #endif
- namespace std {
- inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
- inline bool isnan(double num) { return !!_isnan(num); }
- inline bool isfinite(double x) { return _finite(x); }
- inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
- } // namespace std
- inline double nextafter(double x, double y) { return _nextafter(x, y); }
- inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
- inline double copysign(double x, double y) { return _copysign(x, y); }
- // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
- extern "C" inline double wtf_atan2(double x, double y)
- {
- double posInf = std::numeric_limits<double>::infinity();
- double negInf = -std::numeric_limits<double>::infinity();
- double nan = std::numeric_limits<double>::quiet_NaN();
- double result = nan;
- if (x == posInf && y == posInf)
- result = piOverFourDouble;
- else if (x == posInf && y == negInf)
- result = 3 * piOverFourDouble;
- else if (x == negInf && y == posInf)
- result = -piOverFourDouble;
- else if (x == negInf && y == negInf)
- result = -3 * piOverFourDouble;
- else
- result = ::atan2(x, y);
- return result;
- }
- // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
- extern "C" inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
- // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
- extern "C" inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
- #define atan2(x, y) wtf_atan2(x, y)
- #define fmod(x, y) wtf_fmod(x, y)
- #define pow(x, y) wtf_pow(x, y)
- // MSVC's math functions do not bring lrint.
- inline long int lrint(double flt)
- {
- int64_t intgr;
- #if CPU(X86)
- __asm {
- fld flt
- fistp intgr
- };
- #else
- ASSERT(std::isfinite(flt));
- double rounded = round(flt);
- intgr = static_cast<int64_t>(rounded);
- // If the fractional part is exactly 0.5, we need to check whether
- // the rounded result is even. If it is not we need to add 1 to
- // negative values and subtract one from positive values.
- if ((fabs(intgr - flt) == 0.5) & intgr)
- intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
- #endif
- return static_cast<long int>(intgr);
- }
- #endif // COMPILER(MSVC)
- inline double deg2rad(double d) { return d * piDouble / 180.0; }
- inline double rad2deg(double r) { return r * 180.0 / piDouble; }
- inline double deg2grad(double d) { return d * 400.0 / 360.0; }
- inline double grad2deg(double g) { return g * 360.0 / 400.0; }
- inline double turn2deg(double t) { return t * 360.0; }
- inline double deg2turn(double d) { return d / 360.0; }
- inline double rad2grad(double r) { return r * 200.0 / piDouble; }
- inline double grad2rad(double g) { return g * piDouble / 200.0; }
- inline float deg2rad(float d) { return d * piFloat / 180.0f; }
- inline float rad2deg(float r) { return r * 180.0f / piFloat; }
- inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
- inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
- inline float turn2deg(float t) { return t * 360.0f; }
- inline float deg2turn(float d) { return d / 360.0f; }
- inline float rad2grad(float r) { return r * 200.0f / piFloat; }
- inline float grad2rad(float g) { return g * piFloat / 200.0f; }
- // std::numeric_limits<T>::min() returns the smallest positive value for floating point types
- template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
- template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
- template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
- template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
- template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
- {
- if (value >= static_cast<double>(max))
- return max;
- if (value <= static_cast<double>(min))
- return min;
- return static_cast<T>(value);
- }
- template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
- inline int clampToInteger(double value)
- {
- return clampTo<int>(value);
- }
- inline float clampToFloat(double value)
- {
- return clampTo<float>(value);
- }
- inline int clampToPositiveInteger(double value)
- {
- return clampTo<int>(value, 0);
- }
- inline int clampToInteger(float value)
- {
- return clampTo<int>(value);
- }
- inline int clampToInteger(unsigned x)
- {
- const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
- if (x >= intMax)
- return std::numeric_limits<int>::max();
- return static_cast<int>(x);
- }
- inline bool isWithinIntRange(float x)
- {
- return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
- }
- template<typename T> inline bool hasOneBitSet(T value)
- {
- return !((value - 1) & value) && value;
- }
- template<typename T> inline bool hasZeroOrOneBitsSet(T value)
- {
- return !((value - 1) & value);
- }
- template<typename T> inline bool hasTwoOrMoreBitsSet(T value)
- {
- return !hasZeroOrOneBitsSet(value);
- }
- template <typename T> inline unsigned getLSBSet(T value)
- {
- unsigned result = 0;
- while (value >>= 1)
- ++result;
- return result;
- }
- template<typename T> inline T timesThreePlusOneDividedByTwo(T value)
- {
- // Mathematically equivalent to:
- // (value * 3 + 1) / 2;
- // or:
- // (unsigned)ceil(value * 1.5));
- // This form is not prone to internal overflow.
- return value + (value >> 1) + (value & 1);
- }
- template<typename T> inline bool isNotZeroAndOrdered(T value)
- {
- return value > 0.0 || value < 0.0;
- }
- template<typename T> inline bool isZeroOrUnordered(T value)
- {
- return !isNotZeroAndOrdered(value);
- }
- #ifndef UINT64_C
- #if COMPILER(MSVC)
- #define UINT64_C(c) c ## ui64
- #else
- #define UINT64_C(c) c ## ull
- #endif
- #endif
- #if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
- inline double wtf_pow(double x, double y)
- {
- // MinGW-w64 has a custom implementation for pow.
- // This handles certain special cases that are different.
- if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
- double f;
- if (modf(y, &f) != 0.0)
- return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0;
- }
- if (x == 2.0) {
- int yInt = static_cast<int>(y);
- if (y == yInt)
- return ldexp(1.0, yInt);
- }
- return pow(x, y);
- }
- #define pow(x, y) wtf_pow(x, y)
- #endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
- // decompose 'number' to its sign, exponent, and mantissa components.
- // The result is interpreted as:
- // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
- inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
- {
- ASSERT(std::isfinite(number));
- sign = std::signbit(number);
- uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
- exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
- mantissa = bits & 0xFFFFFFFFFFFFFull;
- // Check for zero/denormal values; if so, adjust the exponent,
- // if not insert the implicit, omitted leading 1 bit.
- if (exponent == -0x3ff)
- exponent = mantissa ? -0x3fe : 0;
- else
- mantissa |= 0x10000000000000ull;
- }
- // Calculate d % 2^{64}.
- inline void doubleToInteger(double d, unsigned long long& value)
- {
- if (std::isnan(d) || std::isinf(d))
- value = 0;
- else {
- // -2^{64} < fmodValue < 2^{64}.
- double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
- if (fmodValue >= 0) {
- // 0 <= fmodValue < 2^{64}.
- // 0 <= value < 2^{64}. This cast causes no loss.
- value = static_cast<unsigned long long>(fmodValue);
- } else {
- // -2^{64} < fmodValue < 0.
- // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
- unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
- // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
- // 0 < value < 2^{64}.
- value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
- }
- }
- }
- namespace WTF {
- // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
- inline uint32_t roundUpToPowerOfTwo(uint32_t v)
- {
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v++;
- return v;
- }
- inline unsigned fastLog2(unsigned i)
- {
- unsigned log2 = 0;
- if (i & (i - 1))
- log2 += 1;
- if (i >> 16)
- log2 += 16, i >>= 16;
- if (i >> 8)
- log2 += 8, i >>= 8;
- if (i >> 4)
- log2 += 4, i >>= 4;
- if (i >> 2)
- log2 += 2, i >>= 2;
- if (i >> 1)
- log2 += 1;
- return log2;
- }
- } // namespace WTF
- #endif // #ifndef WTF_MathExtras_h
|