123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- /*
- * Copyright (C) 2011 Apple Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef Uint16WithFraction_h
- #define Uint16WithFraction_h
- #include <wtf/MathExtras.h>
- namespace JSC {
- // Would be nice if this was a static const member, but the OS X linker
- // seems to want a symbol in the binary in that case...
- #define oneGreaterThanMaxUInt16 0x10000
- // A uint16_t with an infinite precision fraction. Upon overflowing
- // the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16.
- // This is used in converting the fraction part of a number to a string.
- class Uint16WithFraction {
- public:
- explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0)
- {
- ASSERT(number && std::isfinite(number) && !std::signbit(number));
- // Check for values out of uint16_t range.
- if (number >= oneGreaterThanMaxUInt16) {
- m_values.append(oneGreaterThanMaxUInt16);
- m_leadingZeros = 0;
- return;
- }
- // Append the units to m_values.
- double integerPart = floor(number);
- m_values.append(static_cast<uint32_t>(integerPart));
- bool sign;
- int32_t exponent;
- uint64_t mantissa;
- decomposeDouble(number - integerPart, sign, exponent, mantissa);
- ASSERT(!sign && exponent < 0);
- exponent -= divideByExponent;
- int32_t zeroBits = -exponent;
- --zeroBits;
- // Append the append words for to m_values.
- while (zeroBits >= 32) {
- m_values.append(0);
- zeroBits -= 32;
- }
- // Left align the 53 bits of the mantissa within 96 bits.
- uint32_t values[3];
- values[0] = static_cast<uint32_t>(mantissa >> 21);
- values[1] = static_cast<uint32_t>(mantissa << 11);
- values[2] = 0;
- // Shift based on the remainder of the exponent.
- if (zeroBits) {
- values[2] = values[1] << (32 - zeroBits);
- values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits));
- values[0] = (values[0] >> zeroBits);
- }
- m_values.append(values[0]);
- m_values.append(values[1]);
- m_values.append(values[2]);
- // Canonicalize; remove any trailing zeros.
- while (m_values.size() > 1 && !m_values.last())
- m_values.removeLast();
- // Count the number of leading zero, this is useful in optimizing multiplies.
- m_leadingZeros = 0;
- while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
- ++m_leadingZeros;
- }
- Uint16WithFraction& operator*=(uint16_t multiplier)
- {
- ASSERT(checkConsistency());
- // iteratate backwards over the fraction until we reach the leading zeros,
- // passing the carry from one calculation into the next.
- uint64_t accumulator = 0;
- for (size_t i = m_values.size(); i > m_leadingZeros; ) {
- --i;
- accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier);
- m_values[i] = static_cast<uint32_t>(accumulator);
- accumulator >>= 32;
- }
- if (!m_leadingZeros) {
- // With a multiplicand and multiplier in the uint16_t range, this cannot carry
- // (even allowing for the infinity value).
- ASSERT(!accumulator);
- // Check for overflow & clamp to 'infinity'.
- if (m_values[0] >= oneGreaterThanMaxUInt16) {
- m_values.shrink(1);
- m_values[0] = oneGreaterThanMaxUInt16;
- m_leadingZeros = 0;
- return *this;
- }
- } else if (accumulator) {
- // Check for carry from the last multiply, if so overwrite last leading zero.
- m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator);
- // The limited range of the multiplier should mean that even if we carry into
- // the units, we don't need to check for overflow of the uint16_t range.
- ASSERT(m_values[0] < oneGreaterThanMaxUInt16);
- }
- // Multiplication by an even value may introduce trailing zeros; if so, clean them
- // up. (Keeping the value in a normalized form makes some of the comparison operations
- // more efficient).
- while (m_values.size() > 1 && !m_values.last())
- m_values.removeLast();
- ASSERT(checkConsistency());
- return *this;
- }
- bool operator<(const Uint16WithFraction& other)
- {
- ASSERT(checkConsistency());
- ASSERT(other.checkConsistency());
- // Iterate over the common lengths of arrays.
- size_t minSize = std::min(m_values.size(), other.m_values.size());
- for (size_t index = 0; index < minSize; ++index) {
- // If we find a value that is not equal, compare and return.
- uint32_t fromThis = m_values[index];
- uint32_t fromOther = other.m_values[index];
- if (fromThis != fromOther)
- return fromThis < fromOther;
- }
- // If these numbers have the same lengths, they are equal,
- // otherwise which ever number has a longer fraction in larger.
- return other.m_values.size() > minSize;
- }
- // Return the floor (non-fractional portion) of the number, clearing this to zero,
- // leaving the fractional part unchanged.
- uint32_t floorAndSubtract()
- {
- // 'floor' is simple the integer portion of the value.
- uint32_t floor = m_values[0];
- // If floor is non-zero,
- if (floor) {
- m_values[0] = 0;
- m_leadingZeros = 1;
- while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
- ++m_leadingZeros;
- }
- return floor;
- }
- // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater.
- int comparePoint5()
- {
- ASSERT(checkConsistency());
- // If units != 0, this is greater than 0.5.
- if (m_values[0])
- return 1;
- // If size == 1 this value is 0, hence < 0.5.
- if (m_values.size() == 1)
- return -1;
- // Compare to 0.5.
- if (m_values[1] > 0x80000000ul)
- return 1;
- if (m_values[1] < 0x80000000ul)
- return -1;
- // Check for more words - since normalized numbers have no trailing zeros, if
- // there are more that two digits we can assume at least one more is non-zero,
- // and hence the value is > 0.5.
- return m_values.size() > 2 ? 1 : 0;
- }
- // Return true if the sum of this plus addend would be greater than 1.
- bool sumGreaterThanOne(const Uint16WithFraction& addend)
- {
- ASSERT(checkConsistency());
- ASSERT(addend.checkConsistency());
- // First, sum the units. If the result is greater than one, return true.
- // If equal to one, return true if either number has a fractional part.
- uint32_t sum = m_values[0] + addend.m_values[0];
- if (sum)
- return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1;
- // We could still produce a result greater than zero if addition of the next
- // word from the fraction were to carry, leaving a result > 0.
- // Iterate over the common lengths of arrays.
- size_t minSize = std::min(m_values.size(), addend.m_values.size());
- for (size_t index = 1; index < minSize; ++index) {
- // Sum the next word from this & the addend.
- uint32_t fromThis = m_values[index];
- uint32_t fromAddend = addend.m_values[index];
- sum = fromThis + fromAddend;
- // Check for overflow. If so, check whether the remaining result is non-zero,
- // or if there are any further words in the fraction.
- if (sum < fromThis)
- return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size());
- // If the sum is uint32_t max, then we would carry a 1 if addition of the next
- // digits in the number were to overflow.
- if (sum != 0xFFFFFFFF)
- return false;
- }
- return false;
- }
- private:
- bool checkConsistency() const
- {
- // All values should have at least one value.
- return (m_values.size())
- // The units value must be a uint16_t, or the value is the overflow value.
- && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1))
- // There should be no trailing zeros (unless this value is zero!).
- && (m_values.last() || m_values.size() == 1);
- }
- // The internal storage of the number. This vector is always at least one entry in size,
- // with the first entry holding the portion of the number greater than zero. The first
- // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to
- // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16,
- // there can be no fraction (size must be 1).
- //
- // Subsequent values in the array represent portions of the fractional part of this number.
- // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i
- // in the array. The vector should contain no trailing zeros, except for the value '0',
- // represented by a vector contianing a single zero value. These constraints are checked
- // by 'checkConsistency()', above.
- //
- // The inline capacity of the vector is set to be able to contain any IEEE double (1 for
- // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for
- // bits taken from the mantissa).
- Vector<uint32_t, 36> m_values;
- // Cache a count of the number of leading zeros in m_values. We can use this to optimize
- // methods that would otherwise need visit all words in the vector, e.g. multiplication.
- size_t m_leadingZeros;
- };
- }
- #endif
|