MathObject.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /*
  2. * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
  3. * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. */
  20. #include "config.h"
  21. #include "MathObject.h"
  22. #include "Lookup.h"
  23. #include "ObjectPrototype.h"
  24. #include "Operations.h"
  25. #include <time.h>
  26. #include <wtf/Assertions.h>
  27. #include <wtf/MathExtras.h>
  28. #include <wtf/RandomNumber.h>
  29. #include <wtf/RandomNumberSeed.h>
  30. namespace JSC {
  31. ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
  32. static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
  33. static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
  34. static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*);
  35. static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*);
  36. static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*);
  37. static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*);
  38. static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*);
  39. static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*);
  40. static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*);
  41. static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*);
  42. static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*);
  43. static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*);
  44. static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*);
  45. static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*);
  46. static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*);
  47. static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
  48. static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
  49. static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
  50. static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*);
  51. }
  52. #include "MathObject.lut.h"
  53. namespace JSC {
  54. const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
  55. /* Source for MathObject.lut.h
  56. @begin mathTable
  57. abs mathProtoFuncAbs DontEnum|Function 1
  58. acos mathProtoFuncACos DontEnum|Function 1
  59. asin mathProtoFuncASin DontEnum|Function 1
  60. atan mathProtoFuncATan DontEnum|Function 1
  61. atan2 mathProtoFuncATan2 DontEnum|Function 2
  62. ceil mathProtoFuncCeil DontEnum|Function 1
  63. cos mathProtoFuncCos DontEnum|Function 1
  64. exp mathProtoFuncExp DontEnum|Function 1
  65. floor mathProtoFuncFloor DontEnum|Function 1
  66. log mathProtoFuncLog DontEnum|Function 1
  67. max mathProtoFuncMax DontEnum|Function 2
  68. min mathProtoFuncMin DontEnum|Function 2
  69. pow mathProtoFuncPow DontEnum|Function 2
  70. random mathProtoFuncRandom DontEnum|Function 0
  71. round mathProtoFuncRound DontEnum|Function 1
  72. sin mathProtoFuncSin DontEnum|Function 1
  73. sqrt mathProtoFuncSqrt DontEnum|Function 1
  74. tan mathProtoFuncTan DontEnum|Function 1
  75. imul mathProtoFuncIMul DontEnum|Function 2
  76. @end
  77. */
  78. MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure)
  79. : JSNonFinalObject(globalObject->vm(), structure)
  80. {
  81. }
  82. void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject)
  83. {
  84. Base::finishCreation(globalObject->vm());
  85. ASSERT(inherits(&s_info));
  86. putDirectWithoutTransition(exec->vm(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
  87. putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
  88. putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
  89. putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
  90. putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
  91. putDirectWithoutTransition(exec->vm(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
  92. putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
  93. putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
  94. }
  95. bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot)
  96. {
  97. return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot);
  98. }
  99. bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
  100. {
  101. return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor);
  102. }
  103. // ------------------------------ Functions --------------------------------
  104. EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec)
  105. {
  106. return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec))));
  107. }
  108. EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec)
  109. {
  110. return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec))));
  111. }
  112. EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec)
  113. {
  114. return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec))));
  115. }
  116. EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec)
  117. {
  118. return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec))));
  119. }
  120. EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec)
  121. {
  122. double arg0 = exec->argument(0).toNumber(exec);
  123. double arg1 = exec->argument(1).toNumber(exec);
  124. return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1)));
  125. }
  126. EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec)
  127. {
  128. return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec))));
  129. }
  130. EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec)
  131. {
  132. return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec))));
  133. }
  134. EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec)
  135. {
  136. return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec))));
  137. }
  138. EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec)
  139. {
  140. return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec))));
  141. }
  142. EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec)
  143. {
  144. return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec))));
  145. }
  146. EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec)
  147. {
  148. unsigned argsCount = exec->argumentCount();
  149. double result = -std::numeric_limits<double>::infinity();
  150. for (unsigned k = 0; k < argsCount; ++k) {
  151. double val = exec->argument(k).toNumber(exec);
  152. if (std::isnan(val)) {
  153. result = QNaN;
  154. break;
  155. }
  156. if (val > result || (!val && !result && !std::signbit(val)))
  157. result = val;
  158. }
  159. return JSValue::encode(jsNumber(result));
  160. }
  161. EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec)
  162. {
  163. unsigned argsCount = exec->argumentCount();
  164. double result = +std::numeric_limits<double>::infinity();
  165. for (unsigned k = 0; k < argsCount; ++k) {
  166. double val = exec->argument(k).toNumber(exec);
  167. if (std::isnan(val)) {
  168. result = QNaN;
  169. break;
  170. }
  171. if (val < result || (!val && !result && std::signbit(val)))
  172. result = val;
  173. }
  174. return JSValue::encode(jsNumber(result));
  175. }
  176. #if PLATFORM(IOS) && CPU(ARM_THUMB2)
  177. static double fdlibmPow(double x, double y);
  178. static ALWAYS_INLINE bool isDenormal(double x)
  179. {
  180. static const uint64_t signbit = 0x8000000000000000ULL;
  181. static const uint64_t minNormal = 0x0001000000000000ULL;
  182. return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
  183. }
  184. static ALWAYS_INLINE bool isEdgeCase(double x)
  185. {
  186. static const uint64_t signbit = 0x8000000000000000ULL;
  187. static const uint64_t infinity = 0x7fffffffffffffffULL;
  188. return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
  189. }
  190. static ALWAYS_INLINE double mathPow(double x, double y)
  191. {
  192. if (!isDenormal(x) && !isDenormal(y)) {
  193. double libmResult = pow(x,y);
  194. if (libmResult || isEdgeCase(x) || isEdgeCase(y))
  195. return libmResult;
  196. }
  197. return fdlibmPow(x,y);
  198. }
  199. #else
  200. ALWAYS_INLINE double mathPow(double x, double y)
  201. {
  202. return pow(x, y);
  203. }
  204. #endif
  205. EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec)
  206. {
  207. // ECMA 15.8.2.1.13
  208. double arg = exec->argument(0).toNumber(exec);
  209. double arg2 = exec->argument(1).toNumber(exec);
  210. if (std::isnan(arg2))
  211. return JSValue::encode(jsNaN());
  212. if (std::isinf(arg2) && fabs(arg) == 1)
  213. return JSValue::encode(jsNaN());
  214. return JSValue::encode(jsNumber(mathPow(arg, arg2)));
  215. }
  216. EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec)
  217. {
  218. return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber()));
  219. }
  220. EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec)
  221. {
  222. double arg = exec->argument(0).toNumber(exec);
  223. double integer = ceil(arg);
  224. return JSValue::encode(jsNumber(integer - (integer - arg > 0.5)));
  225. }
  226. EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
  227. {
  228. return JSValue::encode(exec->vm().cachedSin(exec->argument(0).toNumber(exec)));
  229. }
  230. EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
  231. {
  232. return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec))));
  233. }
  234. EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec)
  235. {
  236. return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
  237. }
  238. EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec)
  239. {
  240. int32_t left = exec->argument(0).toInt32(exec);
  241. if (exec->hadException())
  242. return JSValue::encode(jsNull());
  243. int32_t right = exec->argument(1).toInt32(exec);
  244. return JSValue::encode(jsNumber(left * right));
  245. }
  246. #if PLATFORM(IOS) && CPU(ARM_THUMB2)
  247. // The following code is taken from netlib.org:
  248. // http://www.netlib.org/fdlibm/fdlibm.h
  249. // http://www.netlib.org/fdlibm/e_pow.c
  250. // http://www.netlib.org/fdlibm/s_scalbn.c
  251. //
  252. // And was originally distributed under the following license:
  253. /*
  254. * ====================================================
  255. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  256. *
  257. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  258. * Permission to use, copy, modify, and distribute this
  259. * software is freely granted, provided that this notice
  260. * is preserved.
  261. * ====================================================
  262. */
  263. /*
  264. * ====================================================
  265. * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
  266. *
  267. * Permission to use, copy, modify, and distribute this
  268. * software is freely granted, provided that this notice
  269. * is preserved.
  270. * ====================================================
  271. */
  272. /* __ieee754_pow(x,y) return x**y
  273. *
  274. * n
  275. * Method: Let x = 2 * (1+f)
  276. * 1. Compute and return log2(x) in two pieces:
  277. * log2(x) = w1 + w2,
  278. * where w1 has 53-24 = 29 bit trailing zeros.
  279. * 2. Perform y*log2(x) = n+y' by simulating muti-precision
  280. * arithmetic, where |y'|<=0.5.
  281. * 3. Return x**y = 2**n*exp(y'*log2)
  282. *
  283. * Special cases:
  284. * 1. (anything) ** 0 is 1
  285. * 2. (anything) ** 1 is itself
  286. * 3. (anything) ** NAN is NAN
  287. * 4. NAN ** (anything except 0) is NAN
  288. * 5. +-(|x| > 1) ** +INF is +INF
  289. * 6. +-(|x| > 1) ** -INF is +0
  290. * 7. +-(|x| < 1) ** +INF is +0
  291. * 8. +-(|x| < 1) ** -INF is +INF
  292. * 9. +-1 ** +-INF is NAN
  293. * 10. +0 ** (+anything except 0, NAN) is +0
  294. * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
  295. * 12. +0 ** (-anything except 0, NAN) is +INF
  296. * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
  297. * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  298. * 15. +INF ** (+anything except 0,NAN) is +INF
  299. * 16. +INF ** (-anything except 0,NAN) is +0
  300. * 17. -INF ** (anything) = -0 ** (-anything)
  301. * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  302. * 19. (-anything except 0 and inf) ** (non-integer) is NAN
  303. *
  304. * Accuracy:
  305. * pow(x,y) returns x**y nearly rounded. In particular
  306. * pow(integer,integer)
  307. * always returns the correct integer provided it is
  308. * representable.
  309. *
  310. * Constants :
  311. * The hexadecimal values are the intended ones for the following
  312. * constants. The decimal values may be used, provided that the
  313. * compiler will convert from decimal to binary accurately enough
  314. * to produce the hexadecimal values shown.
  315. */
  316. #define __HI(x) *(1+(int*)&x)
  317. #define __LO(x) *(int*)&x
  318. static const double
  319. bp[] = {1.0, 1.5,},
  320. dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  321. dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  322. zero = 0.0,
  323. one = 1.0,
  324. two = 2.0,
  325. two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
  326. huge = 1.0e300,
  327. tiny = 1.0e-300,
  328. /* for scalbn */
  329. two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
  330. twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
  331. /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  332. L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  333. L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  334. L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  335. L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  336. L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  337. L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  338. P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  339. P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  340. P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  341. P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  342. P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
  343. lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  344. lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  345. lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  346. ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
  347. cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  348. cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  349. cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
  350. ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  351. ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
  352. ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
  353. inline double fdlibmScalbn (double x, int n)
  354. {
  355. int k,hx,lx;
  356. hx = __HI(x);
  357. lx = __LO(x);
  358. k = (hx&0x7ff00000)>>20; /* extract exponent */
  359. if (k==0) { /* 0 or subnormal x */
  360. if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
  361. x *= two54;
  362. hx = __HI(x);
  363. k = ((hx&0x7ff00000)>>20) - 54;
  364. if (n< -50000) return tiny*x; /*underflow*/
  365. }
  366. if (k==0x7ff) return x+x; /* NaN or Inf */
  367. k = k+n;
  368. if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
  369. if (k > 0) /* normal result */
  370. {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
  371. if (k <= -54) {
  372. if (n > 50000) /* in case integer overflow in n+k */
  373. return huge*copysign(huge,x); /*overflow*/
  374. else return tiny*copysign(tiny,x); /*underflow*/
  375. }
  376. k += 54; /* subnormal result */
  377. __HI(x) = (hx&0x800fffff)|(k<<20);
  378. return x*twom54;
  379. }
  380. double fdlibmPow(double x, double y)
  381. {
  382. double z,ax,z_h,z_l,p_h,p_l;
  383. double y1,t1,t2,r,s,t,u,v,w;
  384. int i0,i1,i,j,k,yisint,n;
  385. int hx,hy,ix,iy;
  386. unsigned lx,ly;
  387. i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
  388. hx = __HI(x); lx = __LO(x);
  389. hy = __HI(y); ly = __LO(y);
  390. ix = hx&0x7fffffff; iy = hy&0x7fffffff;
  391. /* y==zero: x**0 = 1 */
  392. if((iy|ly)==0) return one;
  393. /* +-NaN return x+y */
  394. if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
  395. iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
  396. return x+y;
  397. /* determine if y is an odd int when x < 0
  398. * yisint = 0 ... y is not an integer
  399. * yisint = 1 ... y is an odd int
  400. * yisint = 2 ... y is an even int
  401. */
  402. yisint = 0;
  403. if(hx<0) {
  404. if(iy>=0x43400000) yisint = 2; /* even integer y */
  405. else if(iy>=0x3ff00000) {
  406. k = (iy>>20)-0x3ff; /* exponent */
  407. if(k>20) {
  408. j = ly>>(52-k);
  409. if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
  410. } else if(ly==0) {
  411. j = iy>>(20-k);
  412. if((j<<(20-k))==iy) yisint = 2-(j&1);
  413. }
  414. }
  415. }
  416. /* special value of y */
  417. if(ly==0) {
  418. if (iy==0x7ff00000) { /* y is +-inf */
  419. if(((ix-0x3ff00000)|lx)==0)
  420. return y - y; /* inf**+-1 is NaN */
  421. else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
  422. return (hy>=0)? y: zero;
  423. else /* (|x|<1)**-,+inf = inf,0 */
  424. return (hy<0)?-y: zero;
  425. }
  426. if(iy==0x3ff00000) { /* y is +-1 */
  427. if(hy<0) return one/x; else return x;
  428. }
  429. if(hy==0x40000000) return x*x; /* y is 2 */
  430. if(hy==0x3fe00000) { /* y is 0.5 */
  431. if(hx>=0) /* x >= +0 */
  432. return sqrt(x);
  433. }
  434. }
  435. ax = fabs(x);
  436. /* special value of x */
  437. if(lx==0) {
  438. if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
  439. z = ax; /*x is +-0,+-inf,+-1*/
  440. if(hy<0) z = one/z; /* z = (1/|x|) */
  441. if(hx<0) {
  442. if(((ix-0x3ff00000)|yisint)==0) {
  443. z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  444. } else if(yisint==1)
  445. z = -z; /* (x<0)**odd = -(|x|**odd) */
  446. }
  447. return z;
  448. }
  449. }
  450. n = (hx>>31)+1;
  451. /* (x<0)**(non-int) is NaN */
  452. if((n|yisint)==0) return (x-x)/(x-x);
  453. s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  454. if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
  455. /* |y| is huge */
  456. if(iy>0x41e00000) { /* if |y| > 2**31 */
  457. if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
  458. if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  459. if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  460. }
  461. /* over/underflow if x is not close to one */
  462. if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
  463. if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
  464. /* now |1-x| is tiny <= 2**-20, suffice to compute
  465. log(x) by x-x^2/2+x^3/3-x^4/4 */
  466. t = ax-one; /* t has 20 trailing zeros */
  467. w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
  468. u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
  469. v = t*ivln2_l-w*ivln2;
  470. t1 = u+v;
  471. __LO(t1) = 0;
  472. t2 = v-(t1-u);
  473. } else {
  474. double ss,s2,s_h,s_l,t_h,t_l;
  475. n = 0;
  476. /* take care subnormal number */
  477. if(ix<0x00100000)
  478. {ax *= two53; n -= 53; ix = __HI(ax); }
  479. n += ((ix)>>20)-0x3ff;
  480. j = ix&0x000fffff;
  481. /* determine interval */
  482. ix = j|0x3ff00000; /* normalize ix */
  483. if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
  484. else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
  485. else {k=0;n+=1;ix -= 0x00100000;}
  486. __HI(ax) = ix;
  487. /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  488. u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
  489. v = one/(ax+bp[k]);
  490. ss = u*v;
  491. s_h = ss;
  492. __LO(s_h) = 0;
  493. /* t_h=ax+bp[k] High */
  494. t_h = zero;
  495. __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
  496. t_l = ax - (t_h-bp[k]);
  497. s_l = v*((u-s_h*t_h)-s_h*t_l);
  498. /* compute log(ax) */
  499. s2 = ss*ss;
  500. r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  501. r += s_l*(s_h+ss);
  502. s2 = s_h*s_h;
  503. t_h = 3.0+s2+r;
  504. __LO(t_h) = 0;
  505. t_l = r-((t_h-3.0)-s2);
  506. /* u+v = ss*(1+...) */
  507. u = s_h*t_h;
  508. v = s_l*t_h+t_l*ss;
  509. /* 2/(3log2)*(ss+...) */
  510. p_h = u+v;
  511. __LO(p_h) = 0;
  512. p_l = v-(p_h-u);
  513. z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
  514. z_l = cp_l*p_h+p_l*cp+dp_l[k];
  515. /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  516. t = (double)n;
  517. t1 = (((z_h+z_l)+dp_h[k])+t);
  518. __LO(t1) = 0;
  519. t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  520. }
  521. /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  522. y1 = y;
  523. __LO(y1) = 0;
  524. p_l = (y-y1)*t1+y*t2;
  525. p_h = y1*t1;
  526. z = p_l+p_h;
  527. j = __HI(z);
  528. i = __LO(z);
  529. if (j>=0x40900000) { /* z >= 1024 */
  530. if(((j-0x40900000)|i)!=0) /* if z > 1024 */
  531. return s*huge*huge; /* overflow */
  532. else {
  533. if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
  534. }
  535. } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
  536. if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
  537. return s*tiny*tiny; /* underflow */
  538. else {
  539. if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
  540. }
  541. }
  542. /*
  543. * compute 2**(p_h+p_l)
  544. */
  545. i = j&0x7fffffff;
  546. k = (i>>20)-0x3ff;
  547. n = 0;
  548. if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
  549. n = j+(0x00100000>>(k+1));
  550. k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
  551. t = zero;
  552. __HI(t) = (n&~(0x000fffff>>k));
  553. n = ((n&0x000fffff)|0x00100000)>>(20-k);
  554. if(j<0) n = -n;
  555. p_h -= t;
  556. }
  557. t = p_l+p_h;
  558. __LO(t) = 0;
  559. u = t*lg2_h;
  560. v = (p_l-(t-p_h))*lg2+t*lg2_l;
  561. z = u+v;
  562. w = v-(z-u);
  563. t = z*z;
  564. t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  565. r = (z*t1)/(t1-two)-(w+z*w);
  566. z = one-(r-z);
  567. j = __HI(z);
  568. j += (n<<20);
  569. if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
  570. else __HI(z) += (n<<20);
  571. return s*z;
  572. }
  573. #endif
  574. } // namespace JSC