123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package x509
- // RFC 1423 describes the encryption of PEM blocks. The algorithm used to
- // generate a key from the password was derived by looking at the OpenSSL
- // implementation.
- import (
- "crypto/aes"
- "crypto/cipher"
- "crypto/des"
- "crypto/md5"
- "encoding/hex"
- "encoding/pem"
- "errors"
- "io"
- "strings"
- )
- type PEMCipher int
- // Possible values for the EncryptPEMBlock encryption algorithm.
- const (
- _ PEMCipher = iota
- PEMCipherDES
- PEMCipher3DES
- PEMCipherAES128
- PEMCipherAES192
- PEMCipherAES256
- )
- // rfc1423Algo holds a method for enciphering a PEM block.
- type rfc1423Algo struct {
- cipher PEMCipher
- name string
- cipherFunc func(key []byte) (cipher.Block, error)
- keySize int
- blockSize int
- }
- // rfc1423Algos holds a slice of the possible ways to encrypt a PEM
- // block. The ivSize numbers were taken from the OpenSSL source.
- var rfc1423Algos = []rfc1423Algo{{
- cipher: PEMCipherDES,
- name: "DES-CBC",
- cipherFunc: des.NewCipher,
- keySize: 8,
- blockSize: des.BlockSize,
- }, {
- cipher: PEMCipher3DES,
- name: "DES-EDE3-CBC",
- cipherFunc: des.NewTripleDESCipher,
- keySize: 24,
- blockSize: des.BlockSize,
- }, {
- cipher: PEMCipherAES128,
- name: "AES-128-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 16,
- blockSize: aes.BlockSize,
- }, {
- cipher: PEMCipherAES192,
- name: "AES-192-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 24,
- blockSize: aes.BlockSize,
- }, {
- cipher: PEMCipherAES256,
- name: "AES-256-CBC",
- cipherFunc: aes.NewCipher,
- keySize: 32,
- blockSize: aes.BlockSize,
- },
- }
- // deriveKey uses a key derivation function to stretch the password into a key
- // with the number of bits our cipher requires. This algorithm was derived from
- // the OpenSSL source.
- func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
- hash := md5.New()
- out := make([]byte, c.keySize)
- var digest []byte
- for i := 0; i < len(out); i += len(digest) {
- hash.Reset()
- hash.Write(digest)
- hash.Write(password)
- hash.Write(salt)
- digest = hash.Sum(digest[:0])
- copy(out[i:], digest)
- }
- return out
- }
- // IsEncryptedPEMBlock returns if the PEM block is password encrypted.
- func IsEncryptedPEMBlock(b *pem.Block) bool {
- _, ok := b.Headers["DEK-Info"]
- return ok
- }
- // IncorrectPasswordError is returned when an incorrect password is detected.
- var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
- // DecryptPEMBlock takes a password encrypted PEM block and the password used to
- // encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
- // the DEK-Info header to determine the algorithm used for decryption. If no
- // DEK-Info header is present, an error is returned. If an incorrect password
- // is detected an IncorrectPasswordError is returned. Because of deficiencies
- // in the encrypted-PEM format, it's not always possible to detect an incorrect
- // password. In these cases no error will be returned but the decrypted DER
- // bytes will be random noise.
- func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
- dek, ok := b.Headers["DEK-Info"]
- if !ok {
- return nil, errors.New("x509: no DEK-Info header in block")
- }
- idx := strings.Index(dek, ",")
- if idx == -1 {
- return nil, errors.New("x509: malformed DEK-Info header")
- }
- mode, hexIV := dek[:idx], dek[idx+1:]
- ciph := cipherByName(mode)
- if ciph == nil {
- return nil, errors.New("x509: unknown encryption mode")
- }
- iv, err := hex.DecodeString(hexIV)
- if err != nil {
- return nil, err
- }
- if len(iv) != ciph.blockSize {
- return nil, errors.New("x509: incorrect IV size")
- }
- // Based on the OpenSSL implementation. The salt is the first 8 bytes
- // of the initialization vector.
- key := ciph.deriveKey(password, iv[:8])
- block, err := ciph.cipherFunc(key)
- if err != nil {
- return nil, err
- }
- if len(b.Bytes)%block.BlockSize() != 0 {
- return nil, errors.New("x509: encrypted PEM data is not a multiple of the block size")
- }
- data := make([]byte, len(b.Bytes))
- dec := cipher.NewCBCDecrypter(block, iv)
- dec.CryptBlocks(data, b.Bytes)
- // Blocks are padded using a scheme where the last n bytes of padding are all
- // equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
- // For example:
- // [x y z 2 2]
- // [x y 7 7 7 7 7 7 7]
- // If we detect a bad padding, we assume it is an invalid password.
- dlen := len(data)
- if dlen == 0 || dlen%ciph.blockSize != 0 {
- return nil, errors.New("x509: invalid padding")
- }
- last := int(data[dlen-1])
- if dlen < last {
- return nil, IncorrectPasswordError
- }
- if last == 0 || last > ciph.blockSize {
- return nil, IncorrectPasswordError
- }
- for _, val := range data[dlen-last:] {
- if int(val) != last {
- return nil, IncorrectPasswordError
- }
- }
- return data[:dlen-last], nil
- }
- // EncryptPEMBlock returns a PEM block of the specified type holding the
- // given DER-encoded data encrypted with the specified algorithm and
- // password.
- func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
- ciph := cipherByKey(alg)
- if ciph == nil {
- return nil, errors.New("x509: unknown encryption mode")
- }
- iv := make([]byte, ciph.blockSize)
- if _, err := io.ReadFull(rand, iv); err != nil {
- return nil, errors.New("x509: cannot generate IV: " + err.Error())
- }
- // The salt is the first 8 bytes of the initialization vector,
- // matching the key derivation in DecryptPEMBlock.
- key := ciph.deriveKey(password, iv[:8])
- block, err := ciph.cipherFunc(key)
- if err != nil {
- return nil, err
- }
- enc := cipher.NewCBCEncrypter(block, iv)
- pad := ciph.blockSize - len(data)%ciph.blockSize
- encrypted := make([]byte, len(data), len(data)+pad)
- // We could save this copy by encrypting all the whole blocks in
- // the data separately, but it doesn't seem worth the additional
- // code.
- copy(encrypted, data)
- // See RFC 1423, section 1.1
- for i := 0; i < pad; i++ {
- encrypted = append(encrypted, byte(pad))
- }
- enc.CryptBlocks(encrypted, encrypted)
- return &pem.Block{
- Type: blockType,
- Headers: map[string]string{
- "Proc-Type": "4,ENCRYPTED",
- "DEK-Info": ciph.name + "," + hex.EncodeToString(iv),
- },
- Bytes: encrypted,
- }, nil
- }
- func cipherByName(name string) *rfc1423Algo {
- for i := range rfc1423Algos {
- alg := &rfc1423Algos[i]
- if alg.name == name {
- return alg
- }
- }
- return nil
- }
- func cipherByKey(key PEMCipher) *rfc1423Algo {
- for i := range rfc1423Algos {
- alg := &rfc1423Algos[i]
- if alg.cipher == key {
- return alg
- }
- }
- return nil
- }
|