123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- // Copyright 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package rsa
- import (
- "crypto"
- "crypto/aes"
- "crypto/cipher"
- "crypto/rand"
- "crypto/sha256"
- "encoding/hex"
- "fmt"
- "io"
- "os"
- )
- // RSA is able to encrypt only a very limited amount of data. In order
- // to encrypt reasonable amounts of data a hybrid scheme is commonly
- // used: RSA is used to encrypt a key for a symmetric primitive like
- // AES-GCM.
- //
- // Before encrypting, data is “padded” by embedding it in a known
- // structure. This is done for a number of reasons, but the most
- // obvious is to ensure that the value is large enough that the
- // exponentiation is larger than the modulus. (Otherwise it could be
- // decrypted with a square-root.)
- //
- // In these designs, when using PKCS#1 v1.5, it's vitally important to
- // avoid disclosing whether the received RSA message was well-formed
- // (that is, whether the result of decrypting is a correctly padded
- // message) because this leaks secret information.
- // DecryptPKCS1v15SessionKey is designed for this situation and copies
- // the decrypted, symmetric key (if well-formed) in constant-time over
- // a buffer that contains a random key. Thus, if the RSA result isn't
- // well-formed, the implementation uses a random key in constant time.
- func ExampleDecryptPKCS1v15SessionKey() {
- // crypto/rand.Reader is a good source of entropy for blinding the RSA
- // operation.
- rng := rand.Reader
- // The hybrid scheme should use at least a 16-byte symmetric key. Here
- // we read the random key that will be used if the RSA decryption isn't
- // well-formed.
- key := make([]byte, 32)
- if _, err := io.ReadFull(rng, key); err != nil {
- panic("RNG failure")
- }
- rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
- if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil {
- // Any errors that result will be “public” – meaning that they
- // can be determined without any secret information. (For
- // instance, if the length of key is impossible given the RSA
- // public key.)
- fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err)
- return
- }
- // Given the resulting key, a symmetric scheme can be used to decrypt a
- // larger ciphertext.
- block, err := aes.NewCipher(key)
- if err != nil {
- panic("aes.NewCipher failed: " + err.Error())
- }
- // Since the key is random, using a fixed nonce is acceptable as the
- // (key, nonce) pair will still be unique, as required.
- var zeroNonce [12]byte
- aead, err := cipher.NewGCM(block)
- if err != nil {
- panic("cipher.NewGCM failed: " + err.Error())
- }
- ciphertext, _ := hex.DecodeString("00112233445566")
- plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil)
- if err != nil {
- // The RSA ciphertext was badly formed; the decryption will
- // fail here because the AES-GCM key will be incorrect.
- fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err)
- return
- }
- fmt.Printf("Plaintext: %s\n", string(plaintext))
- }
- func ExampleSignPKCS1v15() {
- // crypto/rand.Reader is a good source of entropy for blinding the RSA
- // operation.
- rng := rand.Reader
- message := []byte("message to be signed")
- // Only small messages can be signed directly; thus the hash of a
- // message, rather than the message itself, is signed. This requires
- // that the hash function be collision resistant. SHA-256 is the
- // least-strong hash function that should be used for this at the time
- // of writing (2016).
- hashed := sha256.Sum256(message)
- signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:])
- if err != nil {
- fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err)
- return
- }
- fmt.Printf("Signature: %x\n", signature)
- }
- func ExampleVerifyPKCS1v15() {
- message := []byte("message to be signed")
- signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530")
- // Only small messages can be signed directly; thus the hash of a
- // message, rather than the message itself, is signed. This requires
- // that the hash function be collision resistant. SHA-256 is the
- // least-strong hash function that should be used for this at the time
- // of writing (2016).
- hashed := sha256.Sum256(message)
- err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature)
- if err != nil {
- fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err)
- return
- }
- // signature is a valid signature of message from the public key.
- }
- func ExampleEncryptOAEP() {
- secretMessage := []byte("send reinforcements, we're going to advance")
- label := []byte("orders")
- // crypto/rand.Reader is a good source of entropy for randomizing the
- // encryption function.
- rng := rand.Reader
- ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label)
- if err != nil {
- fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err)
- return
- }
- // Since encryption is a randomized function, ciphertext will be
- // different each time.
- fmt.Printf("Ciphertext: %x\n", ciphertext)
- }
- func ExampleDecryptOAEP() {
- ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460")
- label := []byte("orders")
- // crypto/rand.Reader is a good source of entropy for blinding the RSA
- // operation.
- rng := rand.Reader
- plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label)
- if err != nil {
- fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err)
- return
- }
- fmt.Printf("Plaintext: %s\n", string(plaintext))
- // Remember that encryption only provides confidentiality. The
- // ciphertext should be signed before authenticity is assumed and, even
- // then, consider that messages might be reordered.
- }
|