
USBImager

User’s Manual

version 1.0.7
 2020 - 2021

USBImager

Copyright
USBImager is the intellectual property of

 Baldaszti Zoltán Tamás (BZT) bztemail at gmail dot com

and licensed under the

MIT licence

 Copyright (C) 2020 - 2021 bzt (bztsrc@gitlab)

 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation
 files (the "Software"), to deal in the Software without
 restriction, including without limitation the rights to use, copy,
 modify, merge, publish, distribute, sublicense, and/or sell copies
 of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 DEALINGS IN THE SOFTWARE.

2

USBImager

Table of Contents
Preface..5
Installation..7

Zip Archive..7
Deb Package..7

User Interface...8
1. Image file...8
2. Write out Button..8
3. Read in Button...8
4. Device selection...9
5. Verify Checkbox..9
6. Compress Checkbox..9
7. Buffer Size Selection...9
8. Progress Bar...9
9. Status Bar..9

Writing Image File to Device...10
Creating Backup Image File from Device..11
Sending Image to MicroController...12
Appendix..13

Compilation from Source..13
Windows...13
MacOSX...13
Linux...13
Ubuntu..14

Compilation Options...14
DEBUG...14
USE_WRONLY..14
USE_X11..14
USE_LIBUI..14
USE_UDISKS2..14
DESTDIR and PREFIX..15

Hacking the Source..15
Reporting Bugs..15

3

USBImager

Page left blank intentionally

4

USBImager Preface

Preface
“Make each program do one thing well.”

/ Ken Thompson /

I felt a niche in a simple to use multi-platform application that can write a compressed disk dump image
to an USB device. There are existing solutions, but they are either single platform (mostly Windows
only), or incredibly bloated, and some have been found to spying on its users. Others work perfectly, but
invoked from command line, which makes them unsuitable for average users.

So I’ve decided to create the simplest GUI application possible that does write images to devices.
Because many OS images are distributed in compressed format, it makes sense for such an application
to be able to decompress on-the-fly to save storage space and user’s time. Although it wasn’t originally
planned, but due to pressure from users I’ve added backup capability as well.

What this application wasn’t designed to do, and never will do, is downloading images from the
internet. First, USBImager is capable of writing any image to disks, and it would be impossible to list
all available options. Second, those options are changing all the time, new versions appear, and some
become discontinued. There’s no way to keep such a list always up-to-date. And finally, I wanted the
application to work without any internet connection, to eliminate even the possibility of telemetry.

For the user interface, I’ve decided to use the native interface on all platforms. This made the
development a bit harder, but has many benefits from the user’s point of view. This guarantees that the
application can be distributed as a single portable executable, as it has no library dependencies. It also
guarantees that the application is small in size (currently less than 256 kilobytes on each platform).

The final result of this development (including the source and precompiled binaries for several
platforms) can be obtained at:

https://gitlab.com/bztsrc/usbimager

This application is Open Source and Free Software, and comes without any warranty in the hope that it
will be useful.

Baldaszti Zoltán Tamás

5

https://gitlab.com/bztsrc/usbimager
https://gitlab.com/bztsrc/usbimager
https://gitlab.com/bztsrc/usbimager
https://gitlab.com/bztsrc/usbimager
https://gitlab.com/bztsrc/usbimager

USBImager

Page left blank intentionally

6

USBImager

Installation

USBImager is distributed in three flavours:

1. zip archive

2. deb package

3. source

The zip archive is the most universal, available for all platforms (Windows, MacOSX, Linux). The deb
package can be used on apt based Linux distributions (primarily Raspbian and Ubuntu LTS, but should
work on other distributions). Source is recommended for advanced users and on POSIX systems
without binary USBImager distribution (BSDs, Minix etc.), see Appendix.

Zip Archive
Download one of the zip archives for your desktop from the repository. Extract it to:

C:\Program Files (Windows)

/Applications (MacOSX)

/usr (Linux)

On Windows, right-click on usbimager.exe and create a shortcut. On the shortcut’s "Security" tab, you
can set to run as Administrator. Then you can move the .lnk shortcut where ever you like (to your
Desktop, into the Menu folder etc.)

On MacOSX: go to "System Preferences", "Security & Privacy" and "Privacy". Add USBImager to the
list of "Full Disk Access". Or use “sudo /Applications/USBImager.app/Contents/MacOS/usbimager”.

That’s all. You can use USBImager without any further ado. Under MacOSX and Linux it should
appear in the Applications menu right away.

Deb Package
If you’ve downloaded the .deb version, then you can install it with the following command:

sudo dpkg -i usbimager_*.deb

The deb versions depend on GTK-3+ and udisks2.

7

https://gitlab.com/bztsrc/usbimager/-/releases
https://gitlab.com/bztsrc/usbimager/-/releases

USBImager User Interface

User Interface

The interface is very simple, has one window only.

Binaries with the “wo” in their names, and when compiled with USE_WRONLY, the interface is even
simpler and write-only:

1. Image file
The image file selection allows you to specify an image on your file system.

2. Write out Button
Pressing this button will start the write operation, reading the image file and writing to device.

3. Read in Button
Pressing this button will start a backup operation, reading the device and writing to an image file.

8

USBImager User Interface

4. Device selection
This selection allows you to specify the device. Only removable devices are listed to prevent accidental
overwriting of the system disk.

5. Verify Checkbox
If checked, then the write operation will read back each block and compare to the original image in
memory. This verifies if the write was indeed successful.

6. Compress Checkbox
If checked, then the backup operation will also compress the image file before it is saved on your
Desktop.

7. Buffer Size Selection
The image and the device will be processed in this big chunks. Keep in mind that the actual memory
requirement is threefold, because there's one buffer for the compressed data, one for the uncompressed
data, and one for the data read back for verification.

8. Progress Bar
This bar shows the actual progress of the operation.

9. Status Bar
The status bar displays the progress in a textual form. It shows how many bytes has been processed as
well as the estimated remaining time.

9

USBImager Writing Image File to Device

Writing Image File to Device

Select the image file to be written by clicking on 1 . The file can be a raw disk dump image (.img,
.bin, .raw, .iso, .dd, etc.), compressed image (.gz, .bz2, .xz, .zst) or archive (.zip, both PKZip and
Zip64 supported, .zzz (ZZZip), .tar or .cpio (plus their compressed variants)). For archives with
multiple files, the first file in the archive is used as input.

Select the target device to be written to by clicking on 4 .

If you don’t trust the device, you can enable write verification by checking 5 .

If you know the optimal block size for the device, you can select it by clicking on 7 . If you’re unsure,
leave it at “1M”.

Click on 2 to start.

As soon as the progress bar finishes, the image is physically written, you can detach the device.

10

USBImager Creating Backup Image File from Device

Creating Backup Image File from Device

Select the source device to be backed up by clicking on 4 .

If you want to save storage space, you can enable compression by checking 6 . This will compress the
image using zstandard algorithm.

If you know the optimal block size for the device, you can select it by clicking on 7 . If you’re unsure,
leave it at “1M”.

Click on 3 to start.

The image will be saved on your Desktop, and you’ll see the image file’s name in 1 . The name is in
the form "usbimager-(date)T(time).dd". If "Compress" option is checked, then a ".zst" suffix will be
added.

Note: on Linux, if ~/Desktop is not found, then ~/Downloads will be used. If even that doesn't exists,
then the image file will be saved in your home directory. On other platforms the Desktop always exists,
but if by any chance not, then the current directory is used. On all platforms, if an existing directory is
given on the command line, that is used to save backups.

11

USBImager Sending Image to MicroController

Sending Image to MicroController

For this, you’ll have to start USBImager with the “-S” command line flag. Under Linux your user has to
be the member of the "uucp" or "dialout" groups (differs in distributions). The serial line is set to
115200 baud, 8 data bits, no parity, 1 stop bit. For a simple boot loader that's compatible with
USBImager, take a look at Image Receiver (available for RPi1, 2, 3, 4 and IBM PC BIOS machines).

This mode is also used to send emergency initrd images to BOOTBOOT compatible boot loaders.

If the 115200 does not suit your needs, just add a different baud after the flag, like “-S230400”.

Connect your PC with the microcontroller / other machine using a serial cable.

Select the kernel image file to be sent by clicking on 1 . The file should be in raw executable format,
but depending on the receiver software, could be ELF as well. Archives are not supported, and
compressed images will be sent as-is to minimize transfer time. To support compressed images,
decompression has to be implemented on the receiver side.

Select the serial port where the cable is connected to by clicking on 4 .

Click on 2 to start. The status bar (9) will show “Waiting for client”.

Turn on the microcontroller / other machine running a simple image receiver boot loader. As soon as
the handshake is done, USBImager will start sending the image automatically.

12

https://gitlab.com/bztsrc/bootboot
https://gitlab.com/bztsrc/imgrecv

USBImager Appendix

Appendix

Compilation from Source
Windows
Dependencies: just standard Win32 DLLs, and MinGW for compilation.

1. install MinGW, this will give you "gcc" and "make" under Windows

2. open MSYS terminal, and in the src directory, run make

3. to create the archive, run make package

MacOSX
Dependencies: just standard frameworks (CoreFoundation, IOKit, DiskArbitration and Cocoa), and
command line tools (no need for XCode, just the CLI tools).

1. in a Terminal, run xcode-select --install and in the pop-up window click "Install". This
will give you "gcc" and "make" under MacOSX.

2. in the src directory, run make

3. to create the archive, run make package

By default USBImager is compiled for native Cocoa with libui (included). You can also compile for
X11 (if you have XQuartz installed) by using USE_X11=yes make. Running make will complain
about setgid, don’t mind.

Linux
Dependencies: libc, libX11 and standard GNU toolchain.

1. in the src directory, run make

2. to create the archive, run make package

3. to create a Debian package, run make deb

4. to install, run sudo make install

You can also compile for GTK+ by using USE_LIBUI=yes make. That'll use libui (included), which
in turn relies on hell a lot of libraries (pthread, X11, wayland, gdk, harfbuzz, pango, cairo, freetype2
etc.) Also note that the GTK version cannot be installed with setgid bit, so that write access to disk
devices cannot be guaranteed. The X11 version gains "disk" group membership on execution

13

https://osdn.net/projects/mingw/releases

USBImager Appendix

automatically. For GTK you'll have to add your user to that group manually or run USBImager via sudo,
or compile with udisks2 support, otherwise you'll get "permission denied" errors.

Ubuntu
As for Ubuntu, you must compile in udisks2 support. You’ll need the following packages:

sudo apt-get install build-essential libgtk-3-dev libudisks2-dev \

 libglib2.0-dev

and compile with

USE_LIBUI=yes USE_UDISKS2=yes make all deb

Compilation Options
Options can be set in environment variables when running make.

DEBUG
Adds debugging information such as extra symbols and source file references to the executable. These
can be read by both valgrind and gdb.

USE_WRONLY
Use a simplified interface which has only a “Write” button.

USE_X11
Under platforms where libui is the default, selects X11 frontend. Currently MacOSX.

USE_LIBUI
Under platforms where libui is not the default, selects libui. Currently Linux. Windows should support
this too, but I was unable to statically link with libui under Windows. Libui under Linux in turn
depends on GTK-3+.

USE_UDISKS2
Make USBImager to fallback to libudisks2 if it cannot umount or open the device. Be warned, using
udisks2 is a dependency hell, and you’ll need many libraries and many daemons running in order to
work. Don’t even try if you’re not using a Gnome-based desktop.

14

USBImager Appendix

DESTDIR and PREFIX
The make install recipe accepts install directory in DESTDIR / PREFIX environment variables. If
not defined, DESTDIR is empty and PREFIX defaults to “/usr”. For example:

sudo DESTDIR=/usr/src/package PREFIX=/usr/local make install

Hacking the Source
To compile with debugging, use DEBUG=yes make. This will add extra debugging symbols and
source file references to the executable, parsed by both valgrind and gdb.

Editing Makefile and changing DISKS_TEST to 1 will add a special test.bin "device" to the list on
all platforms. You can test the decompressors with this.

X11 uses only low-level X11 (no Xft, Xmu nor any other extensions), so it should be trivial to port to
other POSIX systems (like BSD or Minix). It does not handle locales, but it does use UTF-8 encoding
in file names (this only matters for displaying, the file operations can handle any encoding). If you don't

want this, set the USEUTF8 define to 0 in the beginning of the main_x11.c file.

The source is clearly separated into 4 layers:

• stream.c / stream.h is responsible for reading in and uncompressing the data from file as well as
compressing and writing out

• disks_*.c / disks.h is the layer that reads and writes out data to disks, separated for each platform

• main_*.c / main.h is where you can find main() (or WinMain), the user interface stuff

• lang.c / lang.h provides the internationalization and language dictionaries for all platform

Reporting Bugs
Please use the issue tracker on GitLab https://gitlab.com/bztsrc/usbimager/issues

15

https://gitlab.com/bztsrc/usbimager/issues

	Preface
	Installation
	Zip Archive
	Deb Package

	User Interface
	1. Image file
	2. Write out Button
	3. Read in Button
	4. Device selection
	5. Verify Checkbox
	6. Compress Checkbox
	7. Buffer Size Selection
	8. Progress Bar
	9. Status Bar

	Writing Image File to Device
	Creating Backup Image File from Device
	Sending Image to MicroController
	Appendix
	Compilation from Source
	Windows
	MacOSX
	Linux
	Ubuntu

	Compilation Options
	DEBUG
	USE_WRONLY
	USE_X11
	USE_LIBUI
	USE_UDISKS2
	DESTDIR and PREFIX

	Hacking the Source
	Reporting Bugs

