12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062 |
- /* zconf.h -- configuration of the zlib compression library
- * Copyright (C) 1995-2016 Jean-loup Gailly, Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /* @(#) $Id$ */
- #ifndef ZCONF_H
- #define ZCONF_H
- /*
- * If you *really* need a unique prefix for all types and library functions,
- * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
- * Even better than compiling with -DZ_PREFIX would be to use configure to set
- * this permanently in zconf.h using "./configure --zprefix".
- */
- #ifdef Z_PREFIX /* may be set to #if 1 by ./configure */
- # define Z_PREFIX_SET
- /* all linked symbols and init macros */
- # define _dist_code z__dist_code
- # define _length_code z__length_code
- # define _tr_align z__tr_align
- # define _tr_flush_bits z__tr_flush_bits
- # define _tr_flush_block z__tr_flush_block
- # define _tr_init z__tr_init
- # define _tr_stored_block z__tr_stored_block
- # define _tr_tally z__tr_tally
- # define adler32 z_adler32
- # define adler32_combine z_adler32_combine
- # define adler32_combine64 z_adler32_combine64
- # define adler32_z z_adler32_z
- # ifndef Z_SOLO
- # define compress z_compress
- # define compress2 z_compress2
- # define compressBound z_compressBound
- # endif
- # define crc32 z_crc32
- # define crc32_combine z_crc32_combine
- # define crc32_combine64 z_crc32_combine64
- # define crc32_z z_crc32_z
- # define deflate z_deflate
- # define deflateBound z_deflateBound
- # define deflateCopy z_deflateCopy
- # define deflateEnd z_deflateEnd
- # define deflateGetDictionary z_deflateGetDictionary
- # define deflateInit z_deflateInit
- # define deflateInit2 z_deflateInit2
- # define deflateInit2_ z_deflateInit2_
- # define deflateInit_ z_deflateInit_
- # define deflateParams z_deflateParams
- # define deflatePending z_deflatePending
- # define deflatePrime z_deflatePrime
- # define deflateReset z_deflateReset
- # define deflateResetKeep z_deflateResetKeep
- # define deflateSetDictionary z_deflateSetDictionary
- # define deflateSetHeader z_deflateSetHeader
- # define deflateTune z_deflateTune
- # define deflate_copyright z_deflate_copyright
- # define get_crc_table z_get_crc_table
- # ifndef Z_SOLO
- # define gz_error z_gz_error
- # define gz_intmax z_gz_intmax
- # define gz_strwinerror z_gz_strwinerror
- # define gzbuffer z_gzbuffer
- # define gzclearerr z_gzclearerr
- # define gzclose z_gzclose
- # define gzclose_r z_gzclose_r
- # define gzclose_w z_gzclose_w
- # define gzdirect z_gzdirect
- # define gzdopen z_gzdopen
- # define gzeof z_gzeof
- # define gzerror z_gzerror
- # define gzflush z_gzflush
- # define gzfread z_gzfread
- # define gzfwrite z_gzfwrite
- # define gzgetc z_gzgetc
- # define gzgetc_ z_gzgetc_
- # define gzgets z_gzgets
- # define gzoffset z_gzoffset
- # define gzoffset64 z_gzoffset64
- # define gzopen z_gzopen
- # define gzopen64 z_gzopen64
- # ifdef _WIN32
- # define gzopen_w z_gzopen_w
- # endif
- # define gzprintf z_gzprintf
- # define gzputc z_gzputc
- # define gzputs z_gzputs
- # define gzread z_gzread
- # define gzrewind z_gzrewind
- # define gzseek z_gzseek
- # define gzseek64 z_gzseek64
- # define gzsetparams z_gzsetparams
- # define gztell z_gztell
- # define gztell64 z_gztell64
- # define gzungetc z_gzungetc
- # define gzvprintf z_gzvprintf
- # define gzwrite z_gzwrite
- # endif
- # define inflate z_inflate
- # define inflateBack z_inflateBack
- # define inflateBackEnd z_inflateBackEnd
- # define inflateBackInit z_inflateBackInit
- # define inflateBackInit_ z_inflateBackInit_
- # define inflateCodesUsed z_inflateCodesUsed
- # define inflateCopy z_inflateCopy
- # define inflateEnd z_inflateEnd
- # define inflateGetDictionary z_inflateGetDictionary
- # define inflateGetHeader z_inflateGetHeader
- # define inflateInit z_inflateInit
- # define inflateInit2 z_inflateInit2
- # define inflateInit2_ z_inflateInit2_
- # define inflateInit_ z_inflateInit_
- # define inflateMark z_inflateMark
- # define inflatePrime z_inflatePrime
- # define inflateReset z_inflateReset
- # define inflateReset2 z_inflateReset2
- # define inflateResetKeep z_inflateResetKeep
- # define inflateSetDictionary z_inflateSetDictionary
- # define inflateSync z_inflateSync
- # define inflateSyncPoint z_inflateSyncPoint
- # define inflateUndermine z_inflateUndermine
- # define inflateValidate z_inflateValidate
- # define inflate_copyright z_inflate_copyright
- # define inflate_fast z_inflate_fast
- # define inflate_table z_inflate_table
- # ifndef Z_SOLO
- # define uncompress z_uncompress
- # define uncompress2 z_uncompress2
- # endif
- # define zError z_zError
- # ifndef Z_SOLO
- # define zcalloc z_zcalloc
- # define zcfree z_zcfree
- # endif
- # define zlibCompileFlags z_zlibCompileFlags
- # define zlibVersion z_zlibVersion
- /* all zlib typedefs in zlib.h and zconf.h */
- # define Byte z_Byte
- # define Bytef z_Bytef
- # define alloc_func z_alloc_func
- # define charf z_charf
- # define free_func z_free_func
- # ifndef Z_SOLO
- # define gzFile z_gzFile
- # endif
- # define gz_header z_gz_header
- # define gz_headerp z_gz_headerp
- # define in_func z_in_func
- # define intf z_intf
- # define out_func z_out_func
- # define uInt z_uInt
- # define uIntf z_uIntf
- # define uLong z_uLong
- # define uLongf z_uLongf
- # define voidp z_voidp
- # define voidpc z_voidpc
- # define voidpf z_voidpf
- /* all zlib structs in zlib.h and zconf.h */
- # define gz_header_s z_gz_header_s
- # define internal_state z_internal_state
- #endif
- #if defined(__MSDOS__) && !defined(MSDOS)
- # define MSDOS
- #endif
- #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2)
- # define OS2
- #endif
- #if defined(_WINDOWS) && !defined(WINDOWS)
- # define WINDOWS
- #endif
- #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__)
- # ifndef WIN32
- # define WIN32
- # endif
- #endif
- #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32)
- # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__)
- # ifndef SYS16BIT
- # define SYS16BIT
- # endif
- # endif
- #endif
- /*
- * Compile with -DMAXSEG_64K if the alloc function cannot allocate more
- * than 64k bytes at a time (needed on systems with 16-bit int).
- */
- #ifdef SYS16BIT
- # define MAXSEG_64K
- #endif
- #ifdef MSDOS
- # define UNALIGNED_OK
- #endif
- #ifdef __STDC_VERSION__
- # ifndef STDC
- # define STDC
- # endif
- # if __STDC_VERSION__ >= 199901L
- # ifndef STDC99
- # define STDC99
- # endif
- # endif
- #endif
- #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus))
- # define STDC
- #endif
- #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__))
- # define STDC
- #endif
- #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32))
- # define STDC
- #endif
- #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__))
- # define STDC
- #endif
- #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */
- # define STDC
- #endif
- #ifndef STDC
- # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
- # define const /* note: need a more gentle solution here */
- # endif
- #endif
- #if defined(ZLIB_CONST) && !defined(z_const)
- # define z_const const
- #else
- # define z_const
- #endif
- #ifdef Z_SOLO
- typedef unsigned long z_size_t;
- #else
- # define z_longlong long long
- # if defined(NO_SIZE_T)
- typedef unsigned NO_SIZE_T z_size_t;
- # elif defined(STDC)
- # include <stddef.h>
- typedef size_t z_size_t;
- # else
- typedef unsigned long z_size_t;
- # endif
- # undef z_longlong
- #endif
- /* Maximum value for memLevel in deflateInit2 */
- #ifndef MAX_MEM_LEVEL
- # ifdef MAXSEG_64K
- # define MAX_MEM_LEVEL 8
- # else
- # define MAX_MEM_LEVEL 9
- # endif
- #endif
- /* Maximum value for windowBits in deflateInit2 and inflateInit2.
- * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
- * created by gzip. (Files created by minigzip can still be extracted by
- * gzip.)
- */
- #ifndef MAX_WBITS
- # define MAX_WBITS 15 /* 32K LZ77 window */
- #endif
- /* The memory requirements for deflate are (in bytes):
- (1 << (windowBits+2)) + (1 << (memLevel+9))
- that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
- plus a few kilobytes for small objects. For example, if you want to reduce
- the default memory requirements from 256K to 128K, compile with
- make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
- Of course this will generally degrade compression (there's no free lunch).
- The memory requirements for inflate are (in bytes) 1 << windowBits
- that is, 32K for windowBits=15 (default value) plus about 7 kilobytes
- for small objects.
- */
- /* Type declarations */
- #ifndef OF /* function prototypes */
- # ifdef STDC
- # define OF(args) args
- # else
- # define OF(args) ()
- # endif
- #endif
- #ifndef Z_ARG /* function prototypes for stdarg */
- # if defined(STDC) || defined(Z_HAVE_STDARG_H)
- # define Z_ARG(args) args
- # else
- # define Z_ARG(args) ()
- # endif
- #endif
- /* The following definitions for FAR are needed only for MSDOS mixed
- * model programming (small or medium model with some far allocations).
- * This was tested only with MSC; for other MSDOS compilers you may have
- * to define NO_MEMCPY in zutil.h. If you don't need the mixed model,
- * just define FAR to be empty.
- */
- #ifdef SYS16BIT
- # if defined(M_I86SM) || defined(M_I86MM)
- /* MSC small or medium model */
- # define SMALL_MEDIUM
- # ifdef _MSC_VER
- # define FAR _far
- # else
- # define FAR far
- # endif
- # endif
- # if (defined(__SMALL__) || defined(__MEDIUM__))
- /* Turbo C small or medium model */
- # define SMALL_MEDIUM
- # ifdef __BORLANDC__
- # define FAR _far
- # else
- # define FAR far
- # endif
- # endif
- #endif
- #if defined(WINDOWS) || defined(WIN32)
- /* If building or using zlib as a DLL, define ZLIB_DLL.
- * This is not mandatory, but it offers a little performance increase.
- */
- # ifdef ZLIB_DLL
- # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500))
- # ifdef ZLIB_INTERNAL
- # define ZEXTERN extern __declspec(dllexport)
- # else
- # define ZEXTERN extern __declspec(dllimport)
- # endif
- # endif
- # endif /* ZLIB_DLL */
- /* If building or using zlib with the WINAPI/WINAPIV calling convention,
- * define ZLIB_WINAPI.
- * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI.
- */
- # ifdef ZLIB_WINAPI
- # ifdef FAR
- # undef FAR
- # endif
- # include <windows.h>
- /* No need for _export, use ZLIB.DEF instead. */
- /* For complete Windows compatibility, use WINAPI, not __stdcall. */
- # define ZEXPORT WINAPI
- # ifdef WIN32
- # define ZEXPORTVA WINAPIV
- # else
- # define ZEXPORTVA FAR CDECL
- # endif
- # endif
- #endif
- #if defined (__BEOS__)
- # ifdef ZLIB_DLL
- # ifdef ZLIB_INTERNAL
- # define ZEXPORT __declspec(dllexport)
- # define ZEXPORTVA __declspec(dllexport)
- # else
- # define ZEXPORT __declspec(dllimport)
- # define ZEXPORTVA __declspec(dllimport)
- # endif
- # endif
- #endif
- #ifndef ZEXTERN
- # define ZEXTERN extern
- #endif
- #ifndef ZEXPORT
- # define ZEXPORT
- #endif
- #ifndef ZEXPORTVA
- # define ZEXPORTVA
- #endif
- #ifndef FAR
- # define FAR
- #endif
- #if !defined(__MACTYPES__)
- typedef unsigned char Byte; /* 8 bits */
- #endif
- typedef unsigned int uInt; /* 16 bits or more */
- typedef unsigned long uLong; /* 32 bits or more */
- #ifdef SMALL_MEDIUM
- /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */
- # define Bytef Byte FAR
- #else
- typedef Byte FAR Bytef;
- #endif
- typedef char FAR charf;
- typedef int FAR intf;
- typedef uInt FAR uIntf;
- typedef uLong FAR uLongf;
- #ifdef STDC
- typedef void const *voidpc;
- typedef void FAR *voidpf;
- typedef void *voidp;
- #else
- typedef Byte const *voidpc;
- typedef Byte FAR *voidpf;
- typedef Byte *voidp;
- #endif
- #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC)
- # include <limits.h>
- # if (UINT_MAX == 0xffffffffUL)
- # define Z_U4 unsigned
- # elif (ULONG_MAX == 0xffffffffUL)
- # define Z_U4 unsigned long
- # elif (USHRT_MAX == 0xffffffffUL)
- # define Z_U4 unsigned short
- # endif
- #endif
- #ifdef Z_U4
- typedef Z_U4 z_crc_t;
- #else
- typedef unsigned long z_crc_t;
- #endif
- #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */
- # define Z_HAVE_UNISTD_H
- #endif
- #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */
- # define Z_HAVE_STDARG_H
- #endif
- #ifdef STDC
- # ifndef Z_SOLO
- # include <sys/types.h> /* for off_t */
- # endif
- #endif
- #if defined(STDC) || defined(Z_HAVE_STDARG_H)
- # ifndef Z_SOLO
- # include <stdarg.h> /* for va_list */
- # endif
- #endif
- #ifdef _WIN32
- # ifndef Z_SOLO
- # include <stddef.h> /* for wchar_t */
- # endif
- #endif
- /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
- * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
- * though the former does not conform to the LFS document), but considering
- * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
- * equivalently requesting no 64-bit operations
- */
- #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1
- # undef _LARGEFILE64_SOURCE
- #endif
- #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H)
- # define Z_HAVE_UNISTD_H
- #endif
- #ifndef Z_SOLO
- # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE)
- # include <unistd.h> /* for SEEK_*, off_t, and _LFS64_LARGEFILE */
- # ifdef VMS
- # include <unixio.h> /* for off_t */
- # endif
- # ifndef z_off_t
- # define z_off_t off_t
- # endif
- # endif
- #endif
- #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0
- # define Z_LFS64
- #endif
- #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64)
- # define Z_LARGE64
- #endif
- #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64)
- # define Z_WANT64
- #endif
- #if !defined(SEEK_SET) && !defined(Z_SOLO)
- # define SEEK_SET 0 /* Seek from beginning of file. */
- # define SEEK_CUR 1 /* Seek from current position. */
- # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
- #endif
- #ifndef z_off_t
- # define z_off_t long
- #endif
- #if !defined(_WIN32) && defined(Z_LARGE64)
- # define z_off64_t off64_t
- #else
- # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
- # define z_off64_t __int64
- # else
- # define z_off64_t z_off_t
- # endif
- #endif
- /* MVS linker does not support external names larger than 8 bytes */
- #if defined(__MVS__)
- #pragma map(deflateInit_,"DEIN")
- #pragma map(deflateInit2_,"DEIN2")
- #pragma map(deflateEnd,"DEEND")
- #pragma map(deflateBound,"DEBND")
- #pragma map(inflateInit_,"ININ")
- #pragma map(inflateInit2_,"ININ2")
- #pragma map(inflateEnd,"INEND")
- #pragma map(inflateSync,"INSY")
- #pragma map(inflateSetDictionary,"INSEDI")
- #pragma map(compressBound,"CMBND")
- #pragma map(inflate_table,"INTABL")
- #pragma map(inflate_fast,"INFA")
- #pragma map(inflate_copyright,"INCOPY")
- #endif
- #endif /* ZCONF_H */
- /* zlib.h -- interface of the 'zlib' general purpose compression library
- version 1.2.11, January 15th, 2017
- Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any damages
- arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- Jean-loup Gailly Mark Adler
- jloup@gzip.org madler@alumni.caltech.edu
- The data format used by the zlib library is described by RFCs (Request for
- Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
- (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
- */
- #ifndef ZLIB_H
- #define ZLIB_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define ZLIB_VERSION "1.2.11"
- #define ZLIB_VERNUM 0x12b0
- #define ZLIB_VER_MAJOR 1
- #define ZLIB_VER_MINOR 2
- #define ZLIB_VER_REVISION 11
- #define ZLIB_VER_SUBREVISION 0
- /*
- The 'zlib' compression library provides in-memory compression and
- decompression functions, including integrity checks of the uncompressed data.
- This version of the library supports only one compression method (deflation)
- but other algorithms will be added later and will have the same stream
- interface.
- Compression can be done in a single step if the buffers are large enough,
- or can be done by repeated calls of the compression function. In the latter
- case, the application must provide more input and/or consume the output
- (providing more output space) before each call.
- The compressed data format used by default by the in-memory functions is
- the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
- around a deflate stream, which is itself documented in RFC 1951.
- The library also supports reading and writing files in gzip (.gz) format
- with an interface similar to that of stdio using the functions that start
- with "gz". The gzip format is different from the zlib format. gzip is a
- gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
- This library can optionally read and write gzip and raw deflate streams in
- memory as well.
- The zlib format was designed to be compact and fast for use in memory
- and on communications channels. The gzip format was designed for single-
- file compression on file systems, has a larger header than zlib to maintain
- directory information, and uses a different, slower check method than zlib.
- The library does not install any signal handler. The decoder checks
- the consistency of the compressed data, so the library should never crash
- even in the case of corrupted input.
- */
- typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
- typedef void (*free_func) OF((voidpf opaque, voidpf address));
- struct internal_state;
- typedef struct z_stream_s {
- z_const Bytef *next_in; /* next input byte */
- uInt avail_in; /* number of bytes available at next_in */
- uLong total_in; /* total number of input bytes read so far */
- Bytef *next_out; /* next output byte will go here */
- uInt avail_out; /* remaining free space at next_out */
- uLong total_out; /* total number of bytes output so far */
- z_const char *msg; /* last error message, NULL if no error */
- struct internal_state FAR *state; /* not visible by applications */
- alloc_func zalloc; /* used to allocate the internal state */
- free_func zfree; /* used to free the internal state */
- voidpf opaque; /* private data object passed to zalloc and zfree */
- int data_type; /* best guess about the data type: binary or text
- for deflate, or the decoding state for inflate */
- uLong adler; /* Adler-32 or CRC-32 value of the uncompressed data */
- uLong reserved; /* reserved for future use */
- } z_stream;
- typedef z_stream FAR *z_streamp;
- /*
- gzip header information passed to and from zlib routines. See RFC 1952
- for more details on the meanings of these fields.
- */
- typedef struct gz_header_s {
- int text; /* true if compressed data believed to be text */
- uLong time; /* modification time */
- int xflags; /* extra flags (not used when writing a gzip file) */
- int os; /* operating system */
- Bytef *extra; /* pointer to extra field or Z_NULL if none */
- uInt extra_len; /* extra field length (valid if extra != Z_NULL) */
- uInt extra_max; /* space at extra (only when reading header) */
- Bytef *name; /* pointer to zero-terminated file name or Z_NULL */
- uInt name_max; /* space at name (only when reading header) */
- Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */
- uInt comm_max; /* space at comment (only when reading header) */
- int hcrc; /* true if there was or will be a header crc */
- int done; /* true when done reading gzip header (not used
- when writing a gzip file) */
- } gz_header;
- typedef gz_header FAR *gz_headerp;
- /*
- The application must update next_in and avail_in when avail_in has dropped
- to zero. It must update next_out and avail_out when avail_out has dropped
- to zero. The application must initialize zalloc, zfree and opaque before
- calling the init function. All other fields are set by the compression
- library and must not be updated by the application.
- The opaque value provided by the application will be passed as the first
- parameter for calls of zalloc and zfree. This can be useful for custom
- memory management. The compression library attaches no meaning to the
- opaque value.
- zalloc must return Z_NULL if there is not enough memory for the object.
- If zlib is used in a multi-threaded application, zalloc and zfree must be
- thread safe. In that case, zlib is thread-safe. When zalloc and zfree are
- Z_NULL on entry to the initialization function, they are set to internal
- routines that use the standard library functions malloc() and free().
- On 16-bit systems, the functions zalloc and zfree must be able to allocate
- exactly 65536 bytes, but will not be required to allocate more than this if
- the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers
- returned by zalloc for objects of exactly 65536 bytes *must* have their
- offset normalized to zero. The default allocation function provided by this
- library ensures this (see zutil.c). To reduce memory requirements and avoid
- any allocation of 64K objects, at the expense of compression ratio, compile
- the library with -DMAX_WBITS=14 (see zconf.h).
- The fields total_in and total_out can be used for statistics or progress
- reports. After compression, total_in holds the total size of the
- uncompressed data and may be saved for use by the decompressor (particularly
- if the decompressor wants to decompress everything in a single step).
- */
- /* constants */
- #define Z_NO_FLUSH 0
- #define Z_PARTIAL_FLUSH 1
- #define Z_SYNC_FLUSH 2
- #define Z_FULL_FLUSH 3
- #define Z_FINISH 4
- #define Z_BLOCK 5
- #define Z_TREES 6
- /* Allowed flush values; see deflate() and inflate() below for details */
- #define Z_OK 0
- #define Z_STREAM_END 1
- #define Z_NEED_DICT 2
- #define Z_ERRNO (-1)
- #define Z_STREAM_ERROR (-2)
- #define Z_DATA_ERROR (-3)
- #define Z_MEM_ERROR (-4)
- #define Z_BUF_ERROR (-5)
- #define Z_VERSION_ERROR (-6)
- /* Return codes for the compression/decompression functions. Negative values
- * are errors, positive values are used for special but normal events.
- */
- #define Z_NO_COMPRESSION 0
- #define Z_BEST_SPEED 1
- #define Z_BEST_COMPRESSION 9
- #define Z_DEFAULT_COMPRESSION (-1)
- /* compression levels */
- #define Z_FILTERED 1
- #define Z_HUFFMAN_ONLY 2
- #define Z_RLE 3
- #define Z_FIXED 4
- #define Z_DEFAULT_STRATEGY 0
- /* compression strategy; see deflateInit2() below for details */
- #define Z_BINARY 0
- #define Z_TEXT 1
- #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */
- #define Z_UNKNOWN 2
- /* Possible values of the data_type field for deflate() */
- #define Z_DEFLATED 8
- /* The deflate compression method (the only one supported in this version) */
- #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
- #define zlib_version zlibVersion()
- /* for compatibility with versions < 1.0.2 */
- /* basic functions */
- ZEXTERN const char * ZEXPORT zlibVersion OF((void));
- /* The application can compare zlibVersion and ZLIB_VERSION for consistency.
- If the first character differs, the library code actually used is not
- compatible with the zlib.h header file used by the application. This check
- is automatically made by deflateInit and inflateInit.
- */
- /*
- ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
- Initializes the internal stream state for compression. The fields
- zalloc, zfree and opaque must be initialized before by the caller. If
- zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
- allocation functions.
- The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
- 1 gives best speed, 9 gives best compression, 0 gives no compression at all
- (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION
- requests a default compromise between speed and compression (currently
- equivalent to level 6).
- deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if level is not a valid compression level, or
- Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
- with the version assumed by the caller (ZLIB_VERSION). msg is set to null
- if there is no error message. deflateInit does not perform any compression:
- this will be done by deflate().
- */
- ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
- /*
- deflate compresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce
- some output latency (reading input without producing any output) except when
- forced to flush.
- The detailed semantics are as follows. deflate performs one or both of the
- following actions:
- - Compress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in and avail_in are updated and
- processing will resume at this point for the next call of deflate().
- - Generate more output starting at next_out and update next_out and avail_out
- accordingly. This action is forced if the parameter flush is non zero.
- Forcing flush frequently degrades the compression ratio, so this parameter
- should be set only when necessary. Some output may be provided even if
- flush is zero.
- Before the call of deflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming more
- output, and updating avail_in or avail_out accordingly; avail_out should
- never be zero before the call. The application can consume the compressed
- output when it wants, for example when the output buffer is full (avail_out
- == 0), or after each call of deflate(). If deflate returns Z_OK and with
- zero avail_out, it must be called again after making room in the output
- buffer because there might be more output pending. See deflatePending(),
- which can be used if desired to determine whether or not there is more ouput
- in that case.
- Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
- decide how much data to accumulate before producing output, in order to
- maximize compression.
- If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
- flushed to the output buffer and the output is aligned on a byte boundary, so
- that the decompressor can get all input data available so far. (In
- particular avail_in is zero after the call if enough output space has been
- provided before the call.) Flushing may degrade compression for some
- compression algorithms and so it should be used only when necessary. This
- completes the current deflate block and follows it with an empty stored block
- that is three bits plus filler bits to the next byte, followed by four bytes
- (00 00 ff ff).
- If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
- output buffer, but the output is not aligned to a byte boundary. All of the
- input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
- This completes the current deflate block and follows it with an empty fixed
- codes block that is 10 bits long. This assures that enough bytes are output
- in order for the decompressor to finish the block before the empty fixed
- codes block.
- If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
- for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
- seven bits of the current block are held to be written as the next byte after
- the next deflate block is completed. In this case, the decompressor may not
- be provided enough bits at this point in order to complete decompression of
- the data provided so far to the compressor. It may need to wait for the next
- block to be emitted. This is for advanced applications that need to control
- the emission of deflate blocks.
- If flush is set to Z_FULL_FLUSH, all output is flushed as with
- Z_SYNC_FLUSH, and the compression state is reset so that decompression can
- restart from this point if previous compressed data has been damaged or if
- random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
- compression.
- If deflate returns with avail_out == 0, this function must be called again
- with the same value of the flush parameter and more output space (updated
- avail_out), until the flush is complete (deflate returns with non-zero
- avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
- avail_out is greater than six to avoid repeated flush markers due to
- avail_out == 0 on return.
- If the parameter flush is set to Z_FINISH, pending input is processed,
- pending output is flushed and deflate returns with Z_STREAM_END if there was
- enough output space. If deflate returns with Z_OK or Z_BUF_ERROR, this
- function must be called again with Z_FINISH and more output space (updated
- avail_out) but no more input data, until it returns with Z_STREAM_END or an
- error. After deflate has returned Z_STREAM_END, the only possible operations
- on the stream are deflateReset or deflateEnd.
- Z_FINISH can be used in the first deflate call after deflateInit if all the
- compression is to be done in a single step. In order to complete in one
- call, avail_out must be at least the value returned by deflateBound (see
- below). Then deflate is guaranteed to return Z_STREAM_END. If not enough
- output space is provided, deflate will not return Z_STREAM_END, and it must
- be called again as described above.
- deflate() sets strm->adler to the Adler-32 checksum of all input read
- so far (that is, total_in bytes). If a gzip stream is being generated, then
- strm->adler will be the CRC-32 checksum of the input read so far. (See
- deflateInit2 below.)
- deflate() may update strm->data_type if it can make a good guess about
- the input data type (Z_BINARY or Z_TEXT). If in doubt, the data is
- considered binary. This field is only for information purposes and does not
- affect the compression algorithm in any manner.
- deflate() returns Z_OK if some progress has been made (more input
- processed or more output produced), Z_STREAM_END if all input has been
- consumed and all output has been produced (only when flush is set to
- Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
- if next_in or next_out was Z_NULL or the state was inadvertently written over
- by the application), or Z_BUF_ERROR if no progress is possible (for example
- avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and
- deflate() can be called again with more input and more output space to
- continue compressing.
- */
- ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
- /*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any pending
- output.
- deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
- stream state was inconsistent, Z_DATA_ERROR if the stream was freed
- prematurely (some input or output was discarded). In the error case, msg
- may be set but then points to a static string (which must not be
- deallocated).
- */
- /*
- ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
- Initializes the internal stream state for decompression. The fields
- next_in, avail_in, zalloc, zfree and opaque must be initialized before by
- the caller. In the current version of inflate, the provided input is not
- read or consumed. The allocation of a sliding window will be deferred to
- the first call of inflate (if the decompression does not complete on the
- first call). If zalloc and zfree are set to Z_NULL, inflateInit updates
- them to use default allocation functions.
- inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
- version assumed by the caller, or Z_STREAM_ERROR if the parameters are
- invalid, such as a null pointer to the structure. msg is set to null if
- there is no error message. inflateInit does not perform any decompression.
- Actual decompression will be done by inflate(). So next_in, and avail_in,
- next_out, and avail_out are unused and unchanged. The current
- implementation of inflateInit() does not process any header information --
- that is deferred until inflate() is called.
- */
- ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
- /*
- inflate decompresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce
- some output latency (reading input without producing any output) except when
- forced to flush.
- The detailed semantics are as follows. inflate performs one or both of the
- following actions:
- - Decompress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), then next_in and avail_in are updated
- accordingly, and processing will resume at this point for the next call of
- inflate().
- - Generate more output starting at next_out and update next_out and avail_out
- accordingly. inflate() provides as much output as possible, until there is
- no more input data or no more space in the output buffer (see below about
- the flush parameter).
- Before the call of inflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming more
- output, and updating the next_* and avail_* values accordingly. If the
- caller of inflate() does not provide both available input and available
- output space, it is possible that there will be no progress made. The
- application can consume the uncompressed output when it wants, for example
- when the output buffer is full (avail_out == 0), or after each call of
- inflate(). If inflate returns Z_OK and with zero avail_out, it must be
- called again after making room in the output buffer because there might be
- more output pending.
- The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
- Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much
- output as possible to the output buffer. Z_BLOCK requests that inflate()
- stop if and when it gets to the next deflate block boundary. When decoding
- the zlib or gzip format, this will cause inflate() to return immediately
- after the header and before the first block. When doing a raw inflate,
- inflate() will go ahead and process the first block, and will return when it
- gets to the end of that block, or when it runs out of data.
- The Z_BLOCK option assists in appending to or combining deflate streams.
- To assist in this, on return inflate() always sets strm->data_type to the
- number of unused bits in the last byte taken from strm->next_in, plus 64 if
- inflate() is currently decoding the last block in the deflate stream, plus
- 128 if inflate() returned immediately after decoding an end-of-block code or
- decoding the complete header up to just before the first byte of the deflate
- stream. The end-of-block will not be indicated until all of the uncompressed
- data from that block has been written to strm->next_out. The number of
- unused bits may in general be greater than seven, except when bit 7 of
- data_type is set, in which case the number of unused bits will be less than
- eight. data_type is set as noted here every time inflate() returns for all
- flush options, and so can be used to determine the amount of currently
- consumed input in bits.
- The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
- end of each deflate block header is reached, before any actual data in that
- block is decoded. This allows the caller to determine the length of the
- deflate block header for later use in random access within a deflate block.
- 256 is added to the value of strm->data_type when inflate() returns
- immediately after reaching the end of the deflate block header.
- inflate() should normally be called until it returns Z_STREAM_END or an
- error. However if all decompression is to be performed in a single step (a
- single call of inflate), the parameter flush should be set to Z_FINISH. In
- this case all pending input is processed and all pending output is flushed;
- avail_out must be large enough to hold all of the uncompressed data for the
- operation to complete. (The size of the uncompressed data may have been
- saved by the compressor for this purpose.) The use of Z_FINISH is not
- required to perform an inflation in one step. However it may be used to
- inform inflate that a faster approach can be used for the single inflate()
- call. Z_FINISH also informs inflate to not maintain a sliding window if the
- stream completes, which reduces inflate's memory footprint. If the stream
- does not complete, either because not all of the stream is provided or not
- enough output space is provided, then a sliding window will be allocated and
- inflate() can be called again to continue the operation as if Z_NO_FLUSH had
- been used.
- In this implementation, inflate() always flushes as much output as
- possible to the output buffer, and always uses the faster approach on the
- first call. So the effects of the flush parameter in this implementation are
- on the return value of inflate() as noted below, when inflate() returns early
- when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
- memory for a sliding window when Z_FINISH is used.
- If a preset dictionary is needed after this call (see inflateSetDictionary
- below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
- chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
- strm->adler to the Adler-32 checksum of all output produced so far (that is,
- total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
- below. At the end of the stream, inflate() checks that its computed Adler-32
- checksum is equal to that saved by the compressor and returns Z_STREAM_END
- only if the checksum is correct.
- inflate() can decompress and check either zlib-wrapped or gzip-wrapped
- deflate data. The header type is detected automatically, if requested when
- initializing with inflateInit2(). Any information contained in the gzip
- header is not retained unless inflateGetHeader() is used. When processing
- gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
- produced so far. The CRC-32 is checked against the gzip trailer, as is the
- uncompressed length, modulo 2^32.
- inflate() returns Z_OK if some progress has been made (more input processed
- or more output produced), Z_STREAM_END if the end of the compressed data has
- been reached and all uncompressed output has been produced, Z_NEED_DICT if a
- preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
- corrupted (input stream not conforming to the zlib format or incorrect check
- value, in which case strm->msg points to a string with a more specific
- error), Z_STREAM_ERROR if the stream structure was inconsistent (for example
- next_in or next_out was Z_NULL, or the state was inadvertently written over
- by the application), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR
- if no progress was possible or if there was not enough room in the output
- buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
- inflate() can be called again with more input and more output space to
- continue decompressing. If Z_DATA_ERROR is returned, the application may
- then call inflateSync() to look for a good compression block if a partial
- recovery of the data is to be attempted.
- */
- ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
- /*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any pending
- output.
- inflateEnd returns Z_OK if success, or Z_STREAM_ERROR if the stream state
- was inconsistent.
- */
- /* Advanced functions */
- /*
- The following functions are needed only in some special applications.
- */
- /*
- ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
- int level,
- int method,
- int windowBits,
- int memLevel,
- int strategy));
- This is another version of deflateInit with more compression options. The
- fields next_in, zalloc, zfree and opaque must be initialized before by the
- caller.
- The method parameter is the compression method. It must be Z_DEFLATED in
- this version of the library.
- The windowBits parameter is the base two logarithm of the window size
- (the size of the history buffer). It should be in the range 8..15 for this
- version of the library. Larger values of this parameter result in better
- compression at the expense of memory usage. The default value is 15 if
- deflateInit is used instead.
- For the current implementation of deflate(), a windowBits value of 8 (a
- window size of 256 bytes) is not supported. As a result, a request for 8
- will result in 9 (a 512-byte window). In that case, providing 8 to
- inflateInit2() will result in an error when the zlib header with 9 is
- checked against the initialization of inflate(). The remedy is to not use 8
- with deflateInit2() with this initialization, or at least in that case use 9
- with inflateInit2().
- windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
- determines the window size. deflate() will then generate raw deflate data
- with no zlib header or trailer, and will not compute a check value.
- windowBits can also be greater than 15 for optional gzip encoding. Add
- 16 to windowBits to write a simple gzip header and trailer around the
- compressed data instead of a zlib wrapper. The gzip header will have no
- file name, no extra data, no comment, no modification time (set to zero), no
- header crc, and the operating system will be set to the appropriate value,
- if the operating system was determined at compile time. If a gzip stream is
- being written, strm->adler is a CRC-32 instead of an Adler-32.
- For raw deflate or gzip encoding, a request for a 256-byte window is
- rejected as invalid, since only the zlib header provides a means of
- transmitting the window size to the decompressor.
- The memLevel parameter specifies how much memory should be allocated
- for the internal compression state. memLevel=1 uses minimum memory but is
- slow and reduces compression ratio; memLevel=9 uses maximum memory for
- optimal speed. The default value is 8. See zconf.h for total memory usage
- as a function of windowBits and memLevel.
- The strategy parameter is used to tune the compression algorithm. Use the
- value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
- filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
- string match), or Z_RLE to limit match distances to one (run-length
- encoding). Filtered data consists mostly of small values with a somewhat
- random distribution. In this case, the compression algorithm is tuned to
- compress them better. The effect of Z_FILTERED is to force more Huffman
- coding and less string matching; it is somewhat intermediate between
- Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as
- fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The
- strategy parameter only affects the compression ratio but not the
- correctness of the compressed output even if it is not set appropriately.
- Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
- decoder for special applications.
- deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
- method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
- incompatible with the version assumed by the caller (ZLIB_VERSION). msg is
- set to null if there is no error message. deflateInit2 does not perform any
- compression: this will be done by deflate().
- */
- ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
- /*
- Initializes the compression dictionary from the given byte sequence
- without producing any compressed output. When using the zlib format, this
- function must be called immediately after deflateInit, deflateInit2 or
- deflateReset, and before any call of deflate. When doing raw deflate, this
- function must be called either before any call of deflate, or immediately
- after the completion of a deflate block, i.e. after all input has been
- consumed and all output has been delivered when using any of the flush
- options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The
- compressor and decompressor must use exactly the same dictionary (see
- inflateSetDictionary).
- The dictionary should consist of strings (byte sequences) that are likely
- to be encountered later in the data to be compressed, with the most commonly
- used strings preferably put towards the end of the dictionary. Using a
- dictionary is most useful when the data to be compressed is short and can be
- predicted with good accuracy; the data can then be compressed better than
- with the default empty dictionary.
- Depending on the size of the compression data structures selected by
- deflateInit or deflateInit2, a part of the dictionary may in effect be
- discarded, for example if the dictionary is larger than the window size
- provided in deflateInit or deflateInit2. Thus the strings most likely to be
- useful should be put at the end of the dictionary, not at the front. In
- addition, the current implementation of deflate will use at most the window
- size minus 262 bytes of the provided dictionary.
- Upon return of this function, strm->adler is set to the Adler-32 value
- of the dictionary; the decompressor may later use this value to determine
- which dictionary has been used by the compressor. (The Adler-32 value
- applies to the whole dictionary even if only a subset of the dictionary is
- actually used by the compressor.) If a raw deflate was requested, then the
- Adler-32 value is not computed and strm->adler is not set.
- deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
- parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
- inconsistent (for example if deflate has already been called for this stream
- or if not at a block boundary for raw deflate). deflateSetDictionary does
- not perform any compression: this will be done by deflate().
- */
- ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
- Bytef *dictionary,
- uInt *dictLength));
- /*
- Returns the sliding dictionary being maintained by deflate. dictLength is
- set to the number of bytes in the dictionary, and that many bytes are copied
- to dictionary. dictionary must have enough space, where 32768 bytes is
- always enough. If deflateGetDictionary() is called with dictionary equal to
- Z_NULL, then only the dictionary length is returned, and nothing is copied.
- Similary, if dictLength is Z_NULL, then it is not set.
- deflateGetDictionary() may return a length less than the window size, even
- when more than the window size in input has been provided. It may return up
- to 258 bytes less in that case, due to how zlib's implementation of deflate
- manages the sliding window and lookahead for matches, where matches can be
- up to 258 bytes long. If the application needs the last window-size bytes of
- input, then that would need to be saved by the application outside of zlib.
- deflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
- stream state is inconsistent.
- */
- ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
- z_streamp source));
- /*
- Sets the destination stream as a complete copy of the source stream.
- This function can be useful when several compression strategies will be
- tried, for example when there are several ways of pre-processing the input
- data with a filter. The streams that will be discarded should then be freed
- by calling deflateEnd. Note that deflateCopy duplicates the internal
- compression state which can be quite large, so this strategy is slow and can
- consume lots of memory.
- deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being Z_NULL). msg is left unchanged in both source and
- destination.
- */
- ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
- /*
- This function is equivalent to deflateEnd followed by deflateInit, but
- does not free and reallocate the internal compression state. The stream
- will leave the compression level and any other attributes that may have been
- set unchanged.
- deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being Z_NULL).
- */
- ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
- int level,
- int strategy));
- /*
- Dynamically update the compression level and compression strategy. The
- interpretation of level and strategy is as in deflateInit2(). This can be
- used to switch between compression and straight copy of the input data, or
- to switch to a different kind of input data requiring a different strategy.
- If the compression approach (which is a function of the level) or the
- strategy is changed, and if any input has been consumed in a previous
- deflate() call, then the input available so far is compressed with the old
- level and strategy using deflate(strm, Z_BLOCK). There are three approaches
- for the compression levels 0, 1..3, and 4..9 respectively. The new level
- and strategy will take effect at the next call of deflate().
- If a deflate(strm, Z_BLOCK) is performed by deflateParams(), and it does
- not have enough output space to complete, then the parameter change will not
- take effect. In this case, deflateParams() can be called again with the
- same parameters and more output space to try again.
- In order to assure a change in the parameters on the first try, the
- deflate stream should be flushed using deflate() with Z_BLOCK or other flush
- request until strm.avail_out is not zero, before calling deflateParams().
- Then no more input data should be provided before the deflateParams() call.
- If this is done, the old level and strategy will be applied to the data
- compressed before deflateParams(), and the new level and strategy will be
- applied to the the data compressed after deflateParams().
- deflateParams returns Z_OK on success, Z_STREAM_ERROR if the source stream
- state was inconsistent or if a parameter was invalid, or Z_BUF_ERROR if
- there was not enough output space to complete the compression of the
- available input data before a change in the strategy or approach. Note that
- in the case of a Z_BUF_ERROR, the parameters are not changed. A return
- value of Z_BUF_ERROR is not fatal, in which case deflateParams() can be
- retried with more output space.
- */
- ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
- int good_length,
- int max_lazy,
- int nice_length,
- int max_chain));
- /*
- Fine tune deflate's internal compression parameters. This should only be
- used by someone who understands the algorithm used by zlib's deflate for
- searching for the best matching string, and even then only by the most
- fanatic optimizer trying to squeeze out the last compressed bit for their
- specific input data. Read the deflate.c source code for the meaning of the
- max_lazy, good_length, nice_length, and max_chain parameters.
- deflateTune() can be called after deflateInit() or deflateInit2(), and
- returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
- */
- ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
- uLong sourceLen));
- /*
- deflateBound() returns an upper bound on the compressed size after
- deflation of sourceLen bytes. It must be called after deflateInit() or
- deflateInit2(), and after deflateSetHeader(), if used. This would be used
- to allocate an output buffer for deflation in a single pass, and so would be
- called before deflate(). If that first deflate() call is provided the
- sourceLen input bytes, an output buffer allocated to the size returned by
- deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed
- to return Z_STREAM_END. Note that it is possible for the compressed size to
- be larger than the value returned by deflateBound() if flush options other
- than Z_FINISH or Z_NO_FLUSH are used.
- */
- ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
- unsigned *pending,
- int *bits));
- /*
- deflatePending() returns the number of bytes and bits of output that have
- been generated, but not yet provided in the available output. The bytes not
- provided would be due to the available output space having being consumed.
- The number of bits of output not provided are between 0 and 7, where they
- await more bits to join them in order to fill out a full byte. If pending
- or bits are Z_NULL, then those values are not set.
- deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- */
- ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
- int bits,
- int value));
- /*
- deflatePrime() inserts bits in the deflate output stream. The intent
- is that this function is used to start off the deflate output with the bits
- leftover from a previous deflate stream when appending to it. As such, this
- function can only be used for raw deflate, and must be used before the first
- deflate() call after a deflateInit2() or deflateReset(). bits must be less
- than or equal to 16, and that many of the least significant bits of value
- will be inserted in the output.
- deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough
- room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the
- source stream state was inconsistent.
- */
- ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
- gz_headerp head));
- /*
- deflateSetHeader() provides gzip header information for when a gzip
- stream is requested by deflateInit2(). deflateSetHeader() may be called
- after deflateInit2() or deflateReset() and before the first call of
- deflate(). The text, time, os, extra field, name, and comment information
- in the provided gz_header structure are written to the gzip header (xflag is
- ignored -- the extra flags are set according to the compression level). The
- caller must assure that, if not Z_NULL, name and comment are terminated with
- a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
- available there. If hcrc is true, a gzip header crc is included. Note that
- the current versions of the command-line version of gzip (up through version
- 1.3.x) do not support header crc's, and will report that it is a "multi-part
- gzip file" and give up.
- If deflateSetHeader is not used, the default gzip header has text false,
- the time set to zero, and os set to 255, with no extra, name, or comment
- fields. The gzip header is returned to the default state by deflateReset().
- deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- */
- /*
- ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
- int windowBits));
- This is another version of inflateInit with an extra parameter. The
- fields next_in, avail_in, zalloc, zfree and opaque must be initialized
- before by the caller.
- The windowBits parameter is the base two logarithm of the maximum window
- size (the size of the history buffer). It should be in the range 8..15 for
- this version of the library. The default value is 15 if inflateInit is used
- instead. windowBits must be greater than or equal to the windowBits value
- provided to deflateInit2() while compressing, or it must be equal to 15 if
- deflateInit2() was not used. If a compressed stream with a larger window
- size is given as input, inflate() will return with the error code
- Z_DATA_ERROR instead of trying to allocate a larger window.
- windowBits can also be zero to request that inflate use the window size in
- the zlib header of the compressed stream.
- windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
- determines the window size. inflate() will then process raw deflate data,
- not looking for a zlib or gzip header, not generating a check value, and not
- looking for any check values for comparison at the end of the stream. This
- is for use with other formats that use the deflate compressed data format
- such as zip. Those formats provide their own check values. If a custom
- format is developed using the raw deflate format for compressed data, it is
- recommended that a check value such as an Adler-32 or a CRC-32 be applied to
- the uncompressed data as is done in the zlib, gzip, and zip formats. For
- most applications, the zlib format should be used as is. Note that comments
- above on the use in deflateInit2() applies to the magnitude of windowBits.
- windowBits can also be greater than 15 for optional gzip decoding. Add
- 32 to windowBits to enable zlib and gzip decoding with automatic header
- detection, or add 16 to decode only the gzip format (the zlib format will
- return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a
- CRC-32 instead of an Adler-32. Unlike the gunzip utility and gzread() (see
- below), inflate() will not automatically decode concatenated gzip streams.
- inflate() will return Z_STREAM_END at the end of the gzip stream. The state
- would need to be reset to continue decoding a subsequent gzip stream.
- inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
- version assumed by the caller, or Z_STREAM_ERROR if the parameters are
- invalid, such as a null pointer to the structure. msg is set to null if
- there is no error message. inflateInit2 does not perform any decompression
- apart from possibly reading the zlib header if present: actual decompression
- will be done by inflate(). (So next_in and avail_in may be modified, but
- next_out and avail_out are unused and unchanged.) The current implementation
- of inflateInit2() does not process any header information -- that is
- deferred until inflate() is called.
- */
- ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
- /*
- Initializes the decompression dictionary from the given uncompressed byte
- sequence. This function must be called immediately after a call of inflate,
- if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
- can be determined from the Adler-32 value returned by that call of inflate.
- The compressor and decompressor must use exactly the same dictionary (see
- deflateSetDictionary). For raw inflate, this function can be called at any
- time to set the dictionary. If the provided dictionary is smaller than the
- window and there is already data in the window, then the provided dictionary
- will amend what's there. The application must insure that the dictionary
- that was used for compression is provided.
- inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
- parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
- inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
- expected one (incorrect Adler-32 value). inflateSetDictionary does not
- perform any decompression: this will be done by subsequent calls of
- inflate().
- */
- ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
- Bytef *dictionary,
- uInt *dictLength));
- /*
- Returns the sliding dictionary being maintained by inflate. dictLength is
- set to the number of bytes in the dictionary, and that many bytes are copied
- to dictionary. dictionary must have enough space, where 32768 bytes is
- always enough. If inflateGetDictionary() is called with dictionary equal to
- Z_NULL, then only the dictionary length is returned, and nothing is copied.
- Similary, if dictLength is Z_NULL, then it is not set.
- inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
- stream state is inconsistent.
- */
- ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
- /*
- Skips invalid compressed data until a possible full flush point (see above
- for the description of deflate with Z_FULL_FLUSH) can be found, or until all
- available input is skipped. No output is provided.
- inflateSync searches for a 00 00 FF FF pattern in the compressed data.
- All full flush points have this pattern, but not all occurrences of this
- pattern are full flush points.
- inflateSync returns Z_OK if a possible full flush point has been found,
- Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
- has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
- In the success case, the application may save the current current value of
- total_in which indicates where valid compressed data was found. In the
- error case, the application may repeatedly call inflateSync, providing more
- input each time, until success or end of the input data.
- */
- ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
- z_streamp source));
- /*
- Sets the destination stream as a complete copy of the source stream.
- This function can be useful when randomly accessing a large stream. The
- first pass through the stream can periodically record the inflate state,
- allowing restarting inflate at those points when randomly accessing the
- stream.
- inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being Z_NULL). msg is left unchanged in both source and
- destination.
- */
- ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
- /*
- This function is equivalent to inflateEnd followed by inflateInit,
- but does not free and reallocate the internal decompression state. The
- stream will keep attributes that may have been set by inflateInit2.
- inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being Z_NULL).
- */
- ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
- int windowBits));
- /*
- This function is the same as inflateReset, but it also permits changing
- the wrap and window size requests. The windowBits parameter is interpreted
- the same as it is for inflateInit2. If the window size is changed, then the
- memory allocated for the window is freed, and the window will be reallocated
- by inflate() if needed.
- inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being Z_NULL), or if
- the windowBits parameter is invalid.
- */
- ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
- int bits,
- int value));
- /*
- This function inserts bits in the inflate input stream. The intent is
- that this function is used to start inflating at a bit position in the
- middle of a byte. The provided bits will be used before any bytes are used
- from next_in. This function should only be used with raw inflate, and
- should be used before the first inflate() call after inflateInit2() or
- inflateReset(). bits must be less than or equal to 16, and that many of the
- least significant bits of value will be inserted in the input.
- If bits is negative, then the input stream bit buffer is emptied. Then
- inflatePrime() can be called again to put bits in the buffer. This is used
- to clear out bits leftover after feeding inflate a block description prior
- to feeding inflate codes.
- inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- */
- ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
- /*
- This function returns two values, one in the lower 16 bits of the return
- value, and the other in the remaining upper bits, obtained by shifting the
- return value down 16 bits. If the upper value is -1 and the lower value is
- zero, then inflate() is currently decoding information outside of a block.
- If the upper value is -1 and the lower value is non-zero, then inflate is in
- the middle of a stored block, with the lower value equaling the number of
- bytes from the input remaining to copy. If the upper value is not -1, then
- it is the number of bits back from the current bit position in the input of
- the code (literal or length/distance pair) currently being processed. In
- that case the lower value is the number of bytes already emitted for that
- code.
- A code is being processed if inflate is waiting for more input to complete
- decoding of the code, or if it has completed decoding but is waiting for
- more output space to write the literal or match data.
- inflateMark() is used to mark locations in the input data for random
- access, which may be at bit positions, and to note those cases where the
- output of a code may span boundaries of random access blocks. The current
- location in the input stream can be determined from avail_in and data_type
- as noted in the description for the Z_BLOCK flush parameter for inflate.
- inflateMark returns the value noted above, or -65536 if the provided
- source stream state was inconsistent.
- */
- ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
- gz_headerp head));
- /*
- inflateGetHeader() requests that gzip header information be stored in the
- provided gz_header structure. inflateGetHeader() may be called after
- inflateInit2() or inflateReset(), and before the first call of inflate().
- As inflate() processes the gzip stream, head->done is zero until the header
- is completed, at which time head->done is set to one. If a zlib stream is
- being decoded, then head->done is set to -1 to indicate that there will be
- no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be
- used to force inflate() to return immediately after header processing is
- complete and before any actual data is decompressed.
- The text, time, xflags, and os fields are filled in with the gzip header
- contents. hcrc is set to true if there is a header CRC. (The header CRC
- was valid if done is set to one.) If extra is not Z_NULL, then extra_max
- contains the maximum number of bytes to write to extra. Once done is true,
- extra_len contains the actual extra field length, and extra contains the
- extra field, or that field truncated if extra_max is less than extra_len.
- If name is not Z_NULL, then up to name_max characters are written there,
- terminated with a zero unless the length is greater than name_max. If
- comment is not Z_NULL, then up to comm_max characters are written there,
- terminated with a zero unless the length is greater than comm_max. When any
- of extra, name, or comment are not Z_NULL and the respective field is not
- present in the header, then that field is set to Z_NULL to signal its
- absence. This allows the use of deflateSetHeader() with the returned
- structure to duplicate the header. However if those fields are set to
- allocated memory, then the application will need to save those pointers
- elsewhere so that they can be eventually freed.
- If inflateGetHeader is not used, then the header information is simply
- discarded. The header is always checked for validity, including the header
- CRC if present. inflateReset() will reset the process to discard the header
- information. The application would need to call inflateGetHeader() again to
- retrieve the header from the next gzip stream.
- inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- */
- /*
- ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
- unsigned char FAR *window));
- Initialize the internal stream state for decompression using inflateBack()
- calls. The fields zalloc, zfree and opaque in strm must be initialized
- before the call. If zalloc and zfree are Z_NULL, then the default library-
- derived memory allocation routines are used. windowBits is the base two
- logarithm of the window size, in the range 8..15. window is a caller
- supplied buffer of that size. Except for special applications where it is
- assured that deflate was used with small window sizes, windowBits must be 15
- and a 32K byte window must be supplied to be able to decompress general
- deflate streams.
- See inflateBack() for the usage of these routines.
- inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
- the parameters are invalid, Z_MEM_ERROR if the internal state could not be
- allocated, or Z_VERSION_ERROR if the version of the library does not match
- the version of the header file.
- */
- typedef unsigned (*in_func) OF((void FAR *,
- z_const unsigned char FAR * FAR *));
- typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
- ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
- in_func in, void FAR *in_desc,
- out_func out, void FAR *out_desc));
- /*
- inflateBack() does a raw inflate with a single call using a call-back
- interface for input and output. This is potentially more efficient than
- inflate() for file i/o applications, in that it avoids copying between the
- output and the sliding window by simply making the window itself the output
- buffer. inflate() can be faster on modern CPUs when used with large
- buffers. inflateBack() trusts the application to not change the output
- buffer passed by the output function, at least until inflateBack() returns.
- inflateBackInit() must be called first to allocate the internal state
- and to initialize the state with the user-provided window buffer.
- inflateBack() may then be used multiple times to inflate a complete, raw
- deflate stream with each call. inflateBackEnd() is then called to free the
- allocated state.
- A raw deflate stream is one with no zlib or gzip header or trailer.
- This routine would normally be used in a utility that reads zip or gzip
- files and writes out uncompressed files. The utility would decode the
- header and process the trailer on its own, hence this routine expects only
- the raw deflate stream to decompress. This is different from the default
- behavior of inflate(), which expects a zlib header and trailer around the
- deflate stream.
- inflateBack() uses two subroutines supplied by the caller that are then
- called by inflateBack() for input and output. inflateBack() calls those
- routines until it reads a complete deflate stream and writes out all of the
- uncompressed data, or until it encounters an error. The function's
- parameters and return types are defined above in the in_func and out_func
- typedefs. inflateBack() will call in(in_desc, &buf) which should return the
- number of bytes of provided input, and a pointer to that input in buf. If
- there is no input available, in() must return zero -- buf is ignored in that
- case -- and inflateBack() will return a buffer error. inflateBack() will
- call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1].
- out() should return zero on success, or non-zero on failure. If out()
- returns non-zero, inflateBack() will return with an error. Neither in() nor
- out() are permitted to change the contents of the window provided to
- inflateBackInit(), which is also the buffer that out() uses to write from.
- The length written by out() will be at most the window size. Any non-zero
- amount of input may be provided by in().
- For convenience, inflateBack() can be provided input on the first call by
- setting strm->next_in and strm->avail_in. If that input is exhausted, then
- in() will be called. Therefore strm->next_in must be initialized before
- calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
- immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
- must also be initialized, and then if strm->avail_in is not zero, input will
- initially be taken from strm->next_in[0 .. strm->avail_in - 1].
- The in_desc and out_desc parameters of inflateBack() is passed as the
- first parameter of in() and out() respectively when they are called. These
- descriptors can be optionally used to pass any information that the caller-
- supplied in() and out() functions need to do their job.
- On return, inflateBack() will set strm->next_in and strm->avail_in to
- pass back any unused input that was provided by the last in() call. The
- return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
- if in() or out() returned an error, Z_DATA_ERROR if there was a format error
- in the deflate stream (in which case strm->msg is set to indicate the nature
- of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
- In the case of Z_BUF_ERROR, an input or output error can be distinguished
- using strm->next_in which will be Z_NULL only if in() returned an error. If
- strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
- non-zero. (in() will always be called before out(), so strm->next_in is
- assured to be defined if out() returns non-zero.) Note that inflateBack()
- cannot return Z_OK.
- */
- ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
- /*
- All memory allocated by inflateBackInit() is freed.
- inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
- state was inconsistent.
- */
- ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
- /* Return flags indicating compile-time options.
- Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
- 1.0: size of uInt
- 3.2: size of uLong
- 5.4: size of voidpf (pointer)
- 7.6: size of z_off_t
- Compiler, assembler, and debug options:
- 8: ZLIB_DEBUG
- 9: ASMV or ASMINF -- use ASM code
- 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
- 11: 0 (reserved)
- One-time table building (smaller code, but not thread-safe if true):
- 12: BUILDFIXED -- build static block decoding tables when needed
- 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
- 14,15: 0 (reserved)
- Library content (indicates missing functionality):
- 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
- deflate code when not needed)
- 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
- and decode gzip streams (to avoid linking crc code)
- 18-19: 0 (reserved)
- Operation variations (changes in library functionality):
- 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
- 21: FASTEST -- deflate algorithm with only one, lowest compression level
- 22,23: 0 (reserved)
- The sprintf variant used by gzprintf (zero is best):
- 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
- 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
- 26: 0 = returns value, 1 = void -- 1 means inferred string length returned
- Remainder:
- 27-31: 0 (reserved)
- */
- #ifndef Z_SOLO
- /* utility functions */
- /*
- The following utility functions are implemented on top of the basic
- stream-oriented functions. To simplify the interface, some default options
- are assumed (compression level and memory usage, standard memory allocation
- functions). The source code of these utility functions can be modified if
- you need special options.
- */
- ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
- /*
- Compresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total size
- of the destination buffer, which must be at least the value returned by
- compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed data. compress() is equivalent to compress2() with a level
- parameter of Z_DEFAULT_COMPRESSION.
- compress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer.
- */
- ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen,
- int level));
- /*
- Compresses the source buffer into the destination buffer. The level
- parameter has the same meaning as in deflateInit. sourceLen is the byte
- length of the source buffer. Upon entry, destLen is the total size of the
- destination buffer, which must be at least the value returned by
- compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed data.
- compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_BUF_ERROR if there was not enough room in the output buffer,
- Z_STREAM_ERROR if the level parameter is invalid.
- */
- ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
- /*
- compressBound() returns an upper bound on the compressed size after
- compress() or compress2() on sourceLen bytes. It would be used before a
- compress() or compress2() call to allocate the destination buffer.
- */
- ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
- /*
- Decompresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total size
- of the destination buffer, which must be large enough to hold the entire
- uncompressed data. (The size of the uncompressed data must have been saved
- previously by the compressor and transmitted to the decompressor by some
- mechanism outside the scope of this compression library.) Upon exit, destLen
- is the actual size of the uncompressed data.
- uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In
- the case where there is not enough room, uncompress() will fill the output
- buffer with the uncompressed data up to that point.
- */
- ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong *sourceLen));
- /*
- Same as uncompress, except that sourceLen is a pointer, where the
- length of the source is *sourceLen. On return, *sourceLen is the number of
- source bytes consumed.
- */
- /* gzip file access functions */
- /*
- This library supports reading and writing files in gzip (.gz) format with
- an interface similar to that of stdio, using the functions that start with
- "gz". The gzip format is different from the zlib format. gzip is a gzip
- wrapper, documented in RFC 1952, wrapped around a deflate stream.
- */
- typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */
- /*
- ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
- Opens a gzip (.gz) file for reading or writing. The mode parameter is as
- in fopen ("rb" or "wb") but can also include a compression level ("wb9") or
- a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
- compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
- for fixed code compression as in "wb9F". (See the description of
- deflateInit2 for more information about the strategy parameter.) 'T' will
- request transparent writing or appending with no compression and not using
- the gzip format.
- "a" can be used instead of "w" to request that the gzip stream that will
- be written be appended to the file. "+" will result in an error, since
- reading and writing to the same gzip file is not supported. The addition of
- "x" when writing will create the file exclusively, which fails if the file
- already exists. On systems that support it, the addition of "e" when
- reading or writing will set the flag to close the file on an execve() call.
- These functions, as well as gzip, will read and decode a sequence of gzip
- streams in a file. The append function of gzopen() can be used to create
- such a file. (Also see gzflush() for another way to do this.) When
- appending, gzopen does not test whether the file begins with a gzip stream,
- nor does it look for the end of the gzip streams to begin appending. gzopen
- will simply append a gzip stream to the existing file.
- gzopen can be used to read a file which is not in gzip format; in this
- case gzread will directly read from the file without decompression. When
- reading, this will be detected automatically by looking for the magic two-
- byte gzip header.
- gzopen returns NULL if the file could not be opened, if there was
- insufficient memory to allocate the gzFile state, or if an invalid mode was
- specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
- errno can be checked to determine if the reason gzopen failed was that the
- file could not be opened.
- */
- ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
- /*
- gzdopen associates a gzFile with the file descriptor fd. File descriptors
- are obtained from calls like open, dup, creat, pipe or fileno (if the file
- has been previously opened with fopen). The mode parameter is as in gzopen.
- The next call of gzclose on the returned gzFile will also close the file
- descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
- fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
- mode);. The duplicated descriptor should be saved to avoid a leak, since
- gzdopen does not close fd if it fails. If you are using fileno() to get the
- file descriptor from a FILE *, then you will have to use dup() to avoid
- double-close()ing the file descriptor. Both gzclose() and fclose() will
- close the associated file descriptor, so they need to have different file
- descriptors.
- gzdopen returns NULL if there was insufficient memory to allocate the
- gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
- provided, or '+' was provided), or if fd is -1. The file descriptor is not
- used until the next gz* read, write, seek, or close operation, so gzdopen
- will not detect if fd is invalid (unless fd is -1).
- */
- ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
- /*
- Set the internal buffer size used by this library's functions. The
- default buffer size is 8192 bytes. This function must be called after
- gzopen() or gzdopen(), and before any other calls that read or write the
- file. The buffer memory allocation is always deferred to the first read or
- write. Three times that size in buffer space is allocated. A larger buffer
- size of, for example, 64K or 128K bytes will noticeably increase the speed
- of decompression (reading).
- The new buffer size also affects the maximum length for gzprintf().
- gzbuffer() returns 0 on success, or -1 on failure, such as being called
- too late.
- */
- ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
- /*
- Dynamically update the compression level or strategy. See the description
- of deflateInit2 for the meaning of these parameters. Previously provided
- data is flushed before the parameter change.
- gzsetparams returns Z_OK if success, Z_STREAM_ERROR if the file was not
- opened for writing, Z_ERRNO if there is an error writing the flushed data,
- or Z_MEM_ERROR if there is a memory allocation error.
- */
- ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
- /*
- Reads the given number of uncompressed bytes from the compressed file. If
- the input file is not in gzip format, gzread copies the given number of
- bytes into the buffer directly from the file.
- After reaching the end of a gzip stream in the input, gzread will continue
- to read, looking for another gzip stream. Any number of gzip streams may be
- concatenated in the input file, and will all be decompressed by gzread().
- If something other than a gzip stream is encountered after a gzip stream,
- that remaining trailing garbage is ignored (and no error is returned).
- gzread can be used to read a gzip file that is being concurrently written.
- Upon reaching the end of the input, gzread will return with the available
- data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then
- gzclearerr can be used to clear the end of file indicator in order to permit
- gzread to be tried again. Z_OK indicates that a gzip stream was completed
- on the last gzread. Z_BUF_ERROR indicates that the input file ended in the
- middle of a gzip stream. Note that gzread does not return -1 in the event
- of an incomplete gzip stream. This error is deferred until gzclose(), which
- will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
- stream. Alternatively, gzerror can be used before gzclose to detect this
- case.
- gzread returns the number of uncompressed bytes actually read, less than
- len for end of file, or -1 for error. If len is too large to fit in an int,
- then nothing is read, -1 is returned, and the error state is set to
- Z_STREAM_ERROR.
- */
- ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
- gzFile file));
- /*
- Read up to nitems items of size size from file to buf, otherwise operating
- as gzread() does. This duplicates the interface of stdio's fread(), with
- size_t request and return types. If the library defines size_t, then
- z_size_t is identical to size_t. If not, then z_size_t is an unsigned
- integer type that can contain a pointer.
- gzfread() returns the number of full items read of size size, or zero if
- the end of the file was reached and a full item could not be read, or if
- there was an error. gzerror() must be consulted if zero is returned in
- order to determine if there was an error. If the multiplication of size and
- nitems overflows, i.e. the product does not fit in a z_size_t, then nothing
- is read, zero is returned, and the error state is set to Z_STREAM_ERROR.
- In the event that the end of file is reached and only a partial item is
- available at the end, i.e. the remaining uncompressed data length is not a
- multiple of size, then the final partial item is nevetheless read into buf
- and the end-of-file flag is set. The length of the partial item read is not
- provided, but could be inferred from the result of gztell(). This behavior
- is the same as the behavior of fread() implementations in common libraries,
- but it prevents the direct use of gzfread() to read a concurrently written
- file, reseting and retrying on end-of-file, when size is not 1.
- */
- ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
- voidpc buf, unsigned len));
- /*
- Writes the given number of uncompressed bytes into the compressed file.
- gzwrite returns the number of uncompressed bytes written or 0 in case of
- error.
- */
- ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
- z_size_t nitems, gzFile file));
- /*
- gzfwrite() writes nitems items of size size from buf to file, duplicating
- the interface of stdio's fwrite(), with size_t request and return types. If
- the library defines size_t, then z_size_t is identical to size_t. If not,
- then z_size_t is an unsigned integer type that can contain a pointer.
- gzfwrite() returns the number of full items written of size size, or zero
- if there was an error. If the multiplication of size and nitems overflows,
- i.e. the product does not fit in a z_size_t, then nothing is written, zero
- is returned, and the error state is set to Z_STREAM_ERROR.
- */
- ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
- /*
- Converts, formats, and writes the arguments to the compressed file under
- control of the format string, as in fprintf. gzprintf returns the number of
- uncompressed bytes actually written, or a negative zlib error code in case
- of error. The number of uncompressed bytes written is limited to 8191, or
- one less than the buffer size given to gzbuffer(). The caller should assure
- that this limit is not exceeded. If it is exceeded, then gzprintf() will
- return an error (0) with nothing written. In this case, there may also be a
- buffer overflow with unpredictable consequences, which is possible only if
- zlib was compiled with the insecure functions sprintf() or vsprintf()
- because the secure snprintf() or vsnprintf() functions were not available.
- This can be determined using zlibCompileFlags().
- */
- ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
- /*
- Writes the given null-terminated string to the compressed file, excluding
- the terminating null character.
- gzputs returns the number of characters written, or -1 in case of error.
- */
- ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
- /*
- Reads bytes from the compressed file until len-1 characters are read, or a
- newline character is read and transferred to buf, or an end-of-file
- condition is encountered. If any characters are read or if len == 1, the
- string is terminated with a null character. If no characters are read due
- to an end-of-file or len < 1, then the buffer is left untouched.
- gzgets returns buf which is a null-terminated string, or it returns NULL
- for end-of-file or in case of error. If there was an error, the contents at
- buf are indeterminate.
- */
- ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
- /*
- Writes c, converted to an unsigned char, into the compressed file. gzputc
- returns the value that was written, or -1 in case of error.
- */
- ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
- /*
- Reads one byte from the compressed file. gzgetc returns this byte or -1
- in case of end of file or error. This is implemented as a macro for speed.
- As such, it does not do all of the checking the other functions do. I.e.
- it does not check to see if file is NULL, nor whether the structure file
- points to has been clobbered or not.
- */
- ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
- /*
- Push one character back onto the stream to be read as the first character
- on the next read. At least one character of push-back is allowed.
- gzungetc() returns the character pushed, or -1 on failure. gzungetc() will
- fail if c is -1, and may fail if a character has been pushed but not read
- yet. If gzungetc is used immediately after gzopen or gzdopen, at least the
- output buffer size of pushed characters is allowed. (See gzbuffer above.)
- The pushed character will be discarded if the stream is repositioned with
- gzseek() or gzrewind().
- */
- ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
- /*
- Flushes all pending output into the compressed file. The parameter flush
- is as in the deflate() function. The return value is the zlib error number
- (see function gzerror below). gzflush is only permitted when writing.
- If the flush parameter is Z_FINISH, the remaining data is written and the
- gzip stream is completed in the output. If gzwrite() is called again, a new
- gzip stream will be started in the output. gzread() is able to read such
- concatenated gzip streams.
- gzflush should be called only when strictly necessary because it will
- degrade compression if called too often.
- */
- /*
- ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
- z_off_t offset, int whence));
- Sets the starting position for the next gzread or gzwrite on the given
- compressed file. The offset represents a number of bytes in the
- uncompressed data stream. The whence parameter is defined as in lseek(2);
- the value SEEK_END is not supported.
- If the file is opened for reading, this function is emulated but can be
- extremely slow. If the file is opened for writing, only forward seeks are
- supported; gzseek then compresses a sequence of zeroes up to the new
- starting position.
- gzseek returns the resulting offset location as measured in bytes from
- the beginning of the uncompressed stream, or -1 in case of error, in
- particular if the file is opened for writing and the new starting position
- would be before the current position.
- */
- ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
- /*
- Rewinds the given file. This function is supported only for reading.
- gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
- */
- /*
- ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
- Returns the starting position for the next gzread or gzwrite on the given
- compressed file. This position represents a number of bytes in the
- uncompressed data stream, and is zero when starting, even if appending or
- reading a gzip stream from the middle of a file using gzdopen().
- gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
- */
- /*
- ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
- Returns the current offset in the file being read or written. This offset
- includes the count of bytes that precede the gzip stream, for example when
- appending or when using gzdopen() for reading. When reading, the offset
- does not include as yet unused buffered input. This information can be used
- for a progress indicator. On error, gzoffset() returns -1.
- */
- ZEXTERN int ZEXPORT gzeof OF((gzFile file));
- /*
- Returns true (1) if the end-of-file indicator has been set while reading,
- false (0) otherwise. Note that the end-of-file indicator is set only if the
- read tried to go past the end of the input, but came up short. Therefore,
- just like feof(), gzeof() may return false even if there is no more data to
- read, in the event that the last read request was for the exact number of
- bytes remaining in the input file. This will happen if the input file size
- is an exact multiple of the buffer size.
- If gzeof() returns true, then the read functions will return no more data,
- unless the end-of-file indicator is reset by gzclearerr() and the input file
- has grown since the previous end of file was detected.
- */
- ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
- /*
- Returns true (1) if file is being copied directly while reading, or false
- (0) if file is a gzip stream being decompressed.
- If the input file is empty, gzdirect() will return true, since the input
- does not contain a gzip stream.
- If gzdirect() is used immediately after gzopen() or gzdopen() it will
- cause buffers to be allocated to allow reading the file to determine if it
- is a gzip file. Therefore if gzbuffer() is used, it should be called before
- gzdirect().
- When writing, gzdirect() returns true (1) if transparent writing was
- requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note:
- gzdirect() is not needed when writing. Transparent writing must be
- explicitly requested, so the application already knows the answer. When
- linking statically, using gzdirect() will include all of the zlib code for
- gzip file reading and decompression, which may not be desired.)
- */
- ZEXTERN int ZEXPORT gzclose OF((gzFile file));
- /*
- Flushes all pending output if necessary, closes the compressed file and
- deallocates the (de)compression state. Note that once file is closed, you
- cannot call gzerror with file, since its structures have been deallocated.
- gzclose must not be called more than once on the same file, just as free
- must not be called more than once on the same allocation.
- gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
- file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the
- last read ended in the middle of a gzip stream, or Z_OK on success.
- */
- ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
- ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
- /*
- Same as gzclose(), but gzclose_r() is only for use when reading, and
- gzclose_w() is only for use when writing or appending. The advantage to
- using these instead of gzclose() is that they avoid linking in zlib
- compression or decompression code that is not used when only reading or only
- writing respectively. If gzclose() is used, then both compression and
- decompression code will be included the application when linking to a static
- zlib library.
- */
- ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
- /*
- Returns the error message for the last error which occurred on the given
- compressed file. errnum is set to zlib error number. If an error occurred
- in the file system and not in the compression library, errnum is set to
- Z_ERRNO and the application may consult errno to get the exact error code.
- The application must not modify the returned string. Future calls to
- this function may invalidate the previously returned string. If file is
- closed, then the string previously returned by gzerror will no longer be
- available.
- gzerror() should be used to distinguish errors from end-of-file for those
- functions above that do not distinguish those cases in their return values.
- */
- ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
- /*
- Clears the error and end-of-file flags for file. This is analogous to the
- clearerr() function in stdio. This is useful for continuing to read a gzip
- file that is being written concurrently.
- */
- #endif /* !Z_SOLO */
- /* checksum functions */
- /*
- These functions are not related to compression but are exported
- anyway because they might be useful in applications using the compression
- library.
- */
- ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
- /*
- Update a running Adler-32 checksum with the bytes buf[0..len-1] and
- return the updated checksum. If buf is Z_NULL, this function returns the
- required initial value for the checksum.
- An Adler-32 checksum is almost as reliable as a CRC-32 but can be computed
- much faster.
- Usage example:
- uLong adler = adler32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- adler = adler32(adler, buffer, length);
- }
- if (adler != original_adler) error();
- */
- ZEXTERN uLong ZEXPORT adler32_z OF((uLong adler, const Bytef *buf,
- z_size_t len));
- /*
- Same as adler32(), but with a size_t length.
- */
- /*
- ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
- z_off_t len2));
- Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
- and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
- each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
- seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note
- that the z_off_t type (like off_t) is a signed integer. If len2 is
- negative, the result has no meaning or utility.
- */
- ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
- /*
- Update a running CRC-32 with the bytes buf[0..len-1] and return the
- updated CRC-32. If buf is Z_NULL, this function returns the required
- initial value for the crc. Pre- and post-conditioning (one's complement) is
- performed within this function so it shouldn't be done by the application.
- Usage example:
- uLong crc = crc32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- crc = crc32(crc, buffer, length);
- }
- if (crc != original_crc) error();
- */
- ZEXTERN uLong ZEXPORT crc32_z OF((uLong adler, const Bytef *buf,
- z_size_t len));
- /*
- Same as crc32(), but with a size_t length.
- */
- /*
- ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
- Combine two CRC-32 check values into one. For two sequences of bytes,
- seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
- calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
- check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
- len2.
- */
- /* various hacks, don't look :) */
- /* deflateInit and inflateInit are macros to allow checking the zlib version
- * and the compiler's view of z_stream:
- */
- ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
- const char *version, int stream_size));
- ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
- const char *version, int stream_size));
- ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
- int windowBits, int memLevel,
- int strategy, const char *version,
- int stream_size));
- ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
- const char *version, int stream_size));
- ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
- unsigned char FAR *window,
- const char *version,
- int stream_size));
- #ifdef Z_PREFIX_SET
- # define z_deflateInit(strm, level) \
- deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
- # define z_inflateInit(strm) \
- inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
- # define z_deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
- deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
- (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
- # define z_inflateInit2(strm, windowBits) \
- inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
- (int)sizeof(z_stream))
- # define z_inflateBackInit(strm, windowBits, window) \
- inflateBackInit_((strm), (windowBits), (window), \
- ZLIB_VERSION, (int)sizeof(z_stream))
- #else
- # define deflateInit(strm, level) \
- deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
- # define inflateInit(strm) \
- inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
- # define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
- deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
- (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
- # define inflateInit2(strm, windowBits) \
- inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
- (int)sizeof(z_stream))
- # define inflateBackInit(strm, windowBits, window) \
- inflateBackInit_((strm), (windowBits), (window), \
- ZLIB_VERSION, (int)sizeof(z_stream))
- #endif
- #ifndef Z_SOLO
- /* gzgetc() macro and its supporting function and exposed data structure. Note
- * that the real internal state is much larger than the exposed structure.
- * This abbreviated structure exposes just enough for the gzgetc() macro. The
- * user should not mess with these exposed elements, since their names or
- * behavior could change in the future, perhaps even capriciously. They can
- * only be used by the gzgetc() macro. You have been warned.
- */
- struct gzFile_s {
- unsigned have;
- unsigned char *next;
- z_off64_t pos;
- };
- ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
- #ifdef Z_PREFIX_SET
- # undef z_gzgetc
- # define z_gzgetc(g) \
- ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
- #else
- # define gzgetc(g) \
- ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
- #endif
- /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
- * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
- * both are true, the application gets the *64 functions, and the regular
- * functions are changed to 64 bits) -- in case these are set on systems
- * without large file support, _LFS64_LARGEFILE must also be true
- */
- #ifdef Z_LARGE64
- ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
- ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
- ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
- ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
- ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
- ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
- #endif
- #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
- # ifdef Z_PREFIX_SET
- # define z_gzopen z_gzopen64
- # define z_gzseek z_gzseek64
- # define z_gztell z_gztell64
- # define z_gzoffset z_gzoffset64
- # define z_adler32_combine z_adler32_combine64
- # define z_crc32_combine z_crc32_combine64
- # else
- # define gzopen gzopen64
- # define gzseek gzseek64
- # define gztell gztell64
- # define gzoffset gzoffset64
- # define adler32_combine adler32_combine64
- # define crc32_combine crc32_combine64
- # endif
- # ifndef Z_LARGE64
- ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
- ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
- ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
- ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
- ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
- ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
- # endif
- #else
- ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
- ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
- ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
- ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
- ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
- ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
- #endif
- #else /* Z_SOLO */
- ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
- ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
- #endif /* !Z_SOLO */
- /* undocumented functions */
- ZEXTERN const char * ZEXPORT zError OF((int));
- ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp));
- ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void));
- ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int));
- ZEXTERN int ZEXPORT inflateValidate OF((z_streamp, int));
- ZEXTERN unsigned long ZEXPORT inflateCodesUsed OF ((z_streamp));
- ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp));
- ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp));
- #if (defined(_WIN32) || defined(__CYGWIN__)) && !defined(Z_SOLO)
- ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
- const char *mode));
- #endif
- #if defined(STDC) || defined(Z_HAVE_STDARG_H)
- # ifndef Z_SOLO
- ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file,
- const char *format,
- va_list va));
- # endif
- #endif
- #ifdef __cplusplus
- }
- #endif
- #endif /* ZLIB_H */
- /* zutil.h -- internal interface and configuration of the compression library
- * Copyright (C) 1995-2016 Jean-loup Gailly, Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /* WARNING: this file should *not* be used by applications. It is
- part of the implementation of the compression library and is
- subject to change. Applications should only use zlib.h.
- */
- /* @(#) $Id$ */
- #ifndef ZUTIL_H
- #define ZUTIL_H
- #ifdef HAVE_HIDDEN
- # define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
- #else
- # define ZLIB_INTERNAL
- #endif
- #if defined(STDC) && !defined(Z_SOLO)
- # if !(defined(_WIN32_WCE) && defined(_MSC_VER))
- # include <stddef.h>
- # endif
- # include <string.h>
- # include <stdlib.h>
- #endif
- #ifdef Z_SOLO
- typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */
- #endif
- #ifndef local
- # define local static
- #endif
- /* since "static" is used to mean two completely different things in C, we
- define "local" for the non-static meaning of "static", for readability
- (compile with -Dlocal if your debugger can't find static symbols) */
- typedef unsigned char uch;
- typedef uch FAR uchf;
- typedef unsigned short ush;
- typedef ush FAR ushf;
- typedef unsigned long ulg;
- extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
- /* (size given to avoid silly warnings with Visual C++) */
- #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
- #define ERR_RETURN(strm,err) \
- return (strm->msg = ERR_MSG(err), (err))
- /* To be used only when the state is known to be valid */
- /* common constants */
- #ifndef DEF_WBITS
- # define DEF_WBITS MAX_WBITS
- #endif
- /* default windowBits for decompression. MAX_WBITS is for compression only */
- #if MAX_MEM_LEVEL >= 8
- # define DEF_MEM_LEVEL 8
- #else
- # define DEF_MEM_LEVEL MAX_MEM_LEVEL
- #endif
- /* default memLevel */
- #define STORED_BLOCK 0
- #define STATIC_TREES 1
- #define DYN_TREES 2
- /* The three kinds of block type */
- #define MIN_MATCH 3
- #define MAX_MATCH 258
- /* The minimum and maximum match lengths */
- #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
- /* target dependencies */
- #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32))
- # define OS_CODE 0x00
- # ifndef Z_SOLO
- # if defined(__TURBOC__) || defined(__BORLANDC__)
- # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
- /* Allow compilation with ANSI keywords only enabled */
- void _Cdecl farfree( void *block );
- void *_Cdecl farmalloc( unsigned long nbytes );
- # else
- # include <alloc.h>
- # endif
- # else /* MSC or DJGPP */
- # include <malloc.h>
- # endif
- # endif
- #endif
- #ifdef AMIGA
- # define OS_CODE 1
- #endif
- #if defined(VAXC) || defined(VMS)
- # define OS_CODE 2
- # define F_OPEN(name, mode) \
- fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
- #endif
- #ifdef __370__
- # if __TARGET_LIB__ < 0x20000000
- # define OS_CODE 4
- # elif __TARGET_LIB__ < 0x40000000
- # define OS_CODE 11
- # else
- # define OS_CODE 8
- # endif
- #endif
- #if defined(ATARI) || defined(atarist)
- # define OS_CODE 5
- #endif
- #ifdef OS2
- # define OS_CODE 6
- # if defined(M_I86) && !defined(Z_SOLO)
- # include <malloc.h>
- # endif
- #endif
- #if defined(MACOS) || defined(TARGET_OS_MAC)
- # define OS_CODE 7
- # ifndef Z_SOLO
- # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
- # include <unix.h> /* for fdopen */
- # else
- # ifndef fdopen
- # define fdopen(fd,mode) NULL /* No fdopen() */
- # endif
- # endif
- # endif
- #endif
- #ifdef __acorn
- # define OS_CODE 13
- #endif
- #if defined(WIN32) && !defined(__CYGWIN__)
- # define OS_CODE 10
- #endif
- #ifdef _BEOS_
- # define OS_CODE 16
- #endif
- #ifdef __TOS_OS400__
- # define OS_CODE 18
- #endif
- #ifdef __APPLE__
- # define OS_CODE 19
- #endif
- #if defined(_BEOS_) || defined(RISCOS)
- # define fdopen(fd,mode) NULL /* No fdopen() */
- #endif
- #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX
- # if defined(_WIN32_WCE)
- # define fdopen(fd,mode) NULL /* No fdopen() */
- # ifndef _PTRDIFF_T_DEFINED
- typedef int ptrdiff_t;
- # define _PTRDIFF_T_DEFINED
- # endif
- # else
- # define fdopen(fd,type) _fdopen(fd,type)
- # endif
- #endif
- #if defined(__BORLANDC__) && !defined(MSDOS)
- #pragma warn -8004
- #pragma warn -8008
- #pragma warn -8066
- #endif
- /* provide prototypes for these when building zlib without LFS */
- #if !defined(_WIN32) && \
- (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
- ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
- ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
- #endif
- /* common defaults */
- #ifndef OS_CODE
- # define OS_CODE 3 /* assume Unix */
- #endif
- #ifndef F_OPEN
- # define F_OPEN(name, mode) fopen((name), (mode))
- #endif
- /* functions */
- #if defined(pyr) || defined(Z_SOLO)
- # define NO_MEMCPY
- #endif
- #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
- /* Use our own functions for small and medium model with MSC <= 5.0.
- * You may have to use the same strategy for Borland C (untested).
- * The __SC__ check is for Symantec.
- */
- # define NO_MEMCPY
- #endif
- #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
- # define HAVE_MEMCPY
- #endif
- #ifdef HAVE_MEMCPY
- # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
- # define zmemcpy _fmemcpy
- # define zmemcmp _fmemcmp
- # define zmemzero(dest, len) _fmemset(dest, 0, len)
- # else
- # define zmemcpy memcpy
- # define zmemcmp memcmp
- # define zmemzero(dest, len) memset(dest, 0, len)
- # endif
- #else
- void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
- int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
- void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len));
- #endif
- /* Diagnostic functions */
- #ifdef ZLIB_DEBUG
- # include <stdio.h>
- extern int ZLIB_INTERNAL z_verbose;
- extern void ZLIB_INTERNAL z_error OF((char *m));
- # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
- # define Trace(x) {if (z_verbose>=0) fprintf x ;}
- # define Tracev(x) {if (z_verbose>0) fprintf x ;}
- # define Tracevv(x) {if (z_verbose>1) fprintf x ;}
- # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
- # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
- #else
- # define Assert(cond,msg)
- # define Trace(x)
- # define Tracev(x)
- # define Tracevv(x)
- # define Tracec(c,x)
- # define Tracecv(c,x)
- #endif
- #ifndef Z_SOLO
- voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items,
- unsigned size));
- void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr));
- #endif
- #define ZALLOC(strm, items, size) \
- (*((strm)->zalloc))((strm)->opaque, (items), (size))
- #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
- #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
- /* Reverse the bytes in a 32-bit value */
- #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
- (((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
- #endif /* ZUTIL_H */
- /* deflate.h -- internal compression state
- * Copyright (C) 1995-2016 Jean-loup Gailly
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /* WARNING: this file should *not* be used by applications. It is
- part of the implementation of the compression library and is
- subject to change. Applications should only use zlib.h.
- */
- /* @(#) $Id$ */
- #ifndef DEFLATE_H
- #define DEFLATE_H
- /* define NO_GZIP when compiling if you want to disable gzip header and
- trailer creation by deflate(). NO_GZIP would be used to avoid linking in
- the crc code when it is not needed. For shared libraries, gzip encoding
- should be left enabled. */
- #ifndef NO_GZIP
- # define GZIP
- #endif
- /* ===========================================================================
- * Internal compression state.
- */
- #define LENGTH_CODES 29
- /* number of length codes, not counting the special END_BLOCK code */
- #define LITERALS 256
- /* number of literal bytes 0..255 */
- #define L_CODES (LITERALS+1+LENGTH_CODES)
- /* number of Literal or Length codes, including the END_BLOCK code */
- #define D_CODES 30
- /* number of distance codes */
- #define BL_CODES 19
- /* number of codes used to transfer the bit lengths */
- #define HEAP_SIZE (2*L_CODES+1)
- /* maximum heap size */
- #define MAX_BITS 15
- /* All codes must not exceed MAX_BITS bits */
- #define Buf_size 16
- /* size of bit buffer in bi_buf */
- #define INIT_STATE 42 /* zlib header -> BUSY_STATE */
- #ifdef GZIP
- # define GZIP_STATE 57 /* gzip header -> BUSY_STATE | EXTRA_STATE */
- #endif
- #define EXTRA_STATE 69 /* gzip extra block -> NAME_STATE */
- #define NAME_STATE 73 /* gzip file name -> COMMENT_STATE */
- #define COMMENT_STATE 91 /* gzip comment -> HCRC_STATE */
- #define HCRC_STATE 103 /* gzip header CRC -> BUSY_STATE */
- #define BUSY_STATE 113 /* deflate -> FINISH_STATE */
- #define FINISH_STATE 666 /* stream complete */
- /* Stream status */
- /* Data structure describing a single value and its code string. */
- typedef struct ct_data_s {
- union {
- ush freq; /* frequency count */
- ush code; /* bit string */
- } fc;
- union {
- ush dad; /* father node in Huffman tree */
- ush len; /* length of bit string */
- } dl;
- } FAR ct_data;
- #define Freq fc.freq
- #define Code fc.code
- #define Dad dl.dad
- #define Len dl.len
- typedef struct static_tree_desc_s static_tree_desc;
- typedef struct tree_desc_s {
- ct_data *dyn_tree; /* the dynamic tree */
- int max_code; /* largest code with non zero frequency */
- const static_tree_desc *stat_desc; /* the corresponding static tree */
- } FAR tree_desc;
- typedef ush Pos;
- typedef Pos FAR Posf;
- typedef unsigned IPos;
- /* A Pos is an index in the character window. We use short instead of int to
- * save space in the various tables. IPos is used only for parameter passing.
- */
- typedef struct internal_state {
- z_streamp strm; /* pointer back to this zlib stream */
- int status; /* as the name implies */
- Bytef *pending_buf; /* output still pending */
- ulg pending_buf_size; /* size of pending_buf */
- Bytef *pending_out; /* next pending byte to output to the stream */
- ulg pending; /* nb of bytes in the pending buffer */
- int wrap; /* bit 0 true for zlib, bit 1 true for gzip */
- gz_headerp gzhead; /* gzip header information to write */
- ulg gzindex; /* where in extra, name, or comment */
- Byte method; /* can only be DEFLATED */
- int last_flush; /* value of flush param for previous deflate call */
- /* used by deflate.c: */
- uInt w_size; /* LZ77 window size (32K by default) */
- uInt w_bits; /* log2(w_size) (8..16) */
- uInt w_mask; /* w_size - 1 */
- Bytef *window;
- /* Sliding window. Input bytes are read into the second half of the window,
- * and move to the first half later to keep a dictionary of at least wSize
- * bytes. With this organization, matches are limited to a distance of
- * wSize-MAX_MATCH bytes, but this ensures that IO is always
- * performed with a length multiple of the block size. Also, it limits
- * the window size to 64K, which is quite useful on MSDOS.
- * To do: use the user input buffer as sliding window.
- */
- ulg window_size;
- /* Actual size of window: 2*wSize, except when the user input buffer
- * is directly used as sliding window.
- */
- Posf *prev;
- /* Link to older string with same hash index. To limit the size of this
- * array to 64K, this link is maintained only for the last 32K strings.
- * An index in this array is thus a window index modulo 32K.
- */
- Posf *head; /* Heads of the hash chains or NIL. */
- uInt ins_h; /* hash index of string to be inserted */
- uInt hash_size; /* number of elements in hash table */
- uInt hash_bits; /* log2(hash_size) */
- uInt hash_mask; /* hash_size-1 */
- uInt hash_shift;
- /* Number of bits by which ins_h must be shifted at each input
- * step. It must be such that after MIN_MATCH steps, the oldest
- * byte no longer takes part in the hash key, that is:
- * hash_shift * MIN_MATCH >= hash_bits
- */
- long block_start;
- /* Window position at the beginning of the current output block. Gets
- * negative when the window is moved backwards.
- */
- uInt match_length; /* length of best match */
- IPos prev_match; /* previous match */
- int match_available; /* set if previous match exists */
- uInt strstart; /* start of string to insert */
- uInt match_start; /* start of matching string */
- uInt lookahead; /* number of valid bytes ahead in window */
- uInt prev_length;
- /* Length of the best match at previous step. Matches not greater than this
- * are discarded. This is used in the lazy match evaluation.
- */
- uInt max_chain_length;
- /* To speed up deflation, hash chains are never searched beyond this
- * length. A higher limit improves compression ratio but degrades the
- * speed.
- */
- uInt max_lazy_match;
- /* Attempt to find a better match only when the current match is strictly
- * smaller than this value. This mechanism is used only for compression
- * levels >= 4.
- */
- # define max_insert_length max_lazy_match
- /* Insert new strings in the hash table only if the match length is not
- * greater than this length. This saves time but degrades compression.
- * max_insert_length is used only for compression levels <= 3.
- */
- int level; /* compression level (1..9) */
- int strategy; /* favor or force Huffman coding*/
- uInt good_match;
- /* Use a faster search when the previous match is longer than this */
- int nice_match; /* Stop searching when current match exceeds this */
- /* used by trees.c: */
- /* Didn't use ct_data typedef below to suppress compiler warning */
- struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
- struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
- struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
- struct tree_desc_s l_desc; /* desc. for literal tree */
- struct tree_desc_s d_desc; /* desc. for distance tree */
- struct tree_desc_s bl_desc; /* desc. for bit length tree */
- ush bl_count[MAX_BITS+1];
- /* number of codes at each bit length for an optimal tree */
- int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
- int heap_len; /* number of elements in the heap */
- int heap_max; /* element of largest frequency */
- /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
- * The same heap array is used to build all trees.
- */
- uch depth[2*L_CODES+1];
- /* Depth of each subtree used as tie breaker for trees of equal frequency
- */
- uchf *l_buf; /* buffer for literals or lengths */
- uInt lit_bufsize;
- /* Size of match buffer for literals/lengths. There are 4 reasons for
- * limiting lit_bufsize to 64K:
- * - frequencies can be kept in 16 bit counters
- * - if compression is not successful for the first block, all input
- * data is still in the window so we can still emit a stored block even
- * when input comes from standard input. (This can also be done for
- * all blocks if lit_bufsize is not greater than 32K.)
- * - if compression is not successful for a file smaller than 64K, we can
- * even emit a stored file instead of a stored block (saving 5 bytes).
- * This is applicable only for zip (not gzip or zlib).
- * - creating new Huffman trees less frequently may not provide fast
- * adaptation to changes in the input data statistics. (Take for
- * example a binary file with poorly compressible code followed by
- * a highly compressible string table.) Smaller buffer sizes give
- * fast adaptation but have of course the overhead of transmitting
- * trees more frequently.
- * - I can't count above 4
- */
- uInt last_lit; /* running index in l_buf */
- ushf *d_buf;
- /* Buffer for distances. To simplify the code, d_buf and l_buf have
- * the same number of elements. To use different lengths, an extra flag
- * array would be necessary.
- */
- ulg opt_len; /* bit length of current block with optimal trees */
- ulg static_len; /* bit length of current block with static trees */
- uInt matches; /* number of string matches in current block */
- uInt insert; /* bytes at end of window left to insert */
- #ifdef ZLIB_DEBUG
- ulg compressed_len; /* total bit length of compressed file mod 2^32 */
- ulg bits_sent; /* bit length of compressed data sent mod 2^32 */
- #endif
- ush bi_buf;
- /* Output buffer. bits are inserted starting at the bottom (least
- * significant bits).
- */
- int bi_valid;
- /* Number of valid bits in bi_buf. All bits above the last valid bit
- * are always zero.
- */
- ulg high_water;
- /* High water mark offset in window for initialized bytes -- bytes above
- * this are set to zero in order to avoid memory check warnings when
- * longest match routines access bytes past the input. This is then
- * updated to the new high water mark.
- */
- } FAR deflate_state;
- /* Output a byte on the stream.
- * IN assertion: there is enough room in pending_buf.
- */
- #define put_byte(s, c) {s->pending_buf[s->pending++] = (Bytef)(c);}
- #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
- /* Minimum amount of lookahead, except at the end of the input file.
- * See deflate.c for comments about the MIN_MATCH+1.
- */
- #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
- /* In order to simplify the code, particularly on 16 bit machines, match
- * distances are limited to MAX_DIST instead of WSIZE.
- */
- #define WIN_INIT MAX_MATCH
- /* Number of bytes after end of data in window to initialize in order to avoid
- memory checker errors from longest match routines */
- /* in trees.c */
- void ZLIB_INTERNAL _tr_init OF((deflate_state *s));
- int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
- void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf,
- ulg stored_len, int last));
- void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s));
- void ZLIB_INTERNAL _tr_align OF((deflate_state *s));
- void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
- ulg stored_len, int last));
- #define d_code(dist) \
- ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
- /* Mapping from a distance to a distance code. dist is the distance - 1 and
- * must not have side effects. _dist_code[256] and _dist_code[257] are never
- * used.
- */
- #ifndef ZLIB_DEBUG
- /* Inline versions of _tr_tally for speed: */
- #if defined(GEN_TREES_H) || !defined(STDC)
- extern uch ZLIB_INTERNAL _length_code[];
- extern uch ZLIB_INTERNAL _dist_code[];
- #else
- extern const uch ZLIB_INTERNAL _length_code[];
- extern const uch ZLIB_INTERNAL _dist_code[];
- #endif
- # define _tr_tally_lit(s, c, flush) \
- { uch cc = (c); \
- s->d_buf[s->last_lit] = 0; \
- s->l_buf[s->last_lit++] = cc; \
- s->dyn_ltree[cc].Freq++; \
- flush = (s->last_lit == s->lit_bufsize-1); \
- }
- # define _tr_tally_dist(s, distance, length, flush) \
- { uch len = (uch)(length); \
- ush dist = (ush)(distance); \
- s->d_buf[s->last_lit] = dist; \
- s->l_buf[s->last_lit++] = len; \
- dist--; \
- s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
- s->dyn_dtree[d_code(dist)].Freq++; \
- flush = (s->last_lit == s->lit_bufsize-1); \
- }
- #else
- # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
- # define _tr_tally_dist(s, distance, length, flush) \
- flush = _tr_tally(s, distance, length)
- #endif
- #endif /* DEFLATE_H */
|