Cluster.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #ifdef ZT_ENABLE_CLUSTER
  19. #include <stdint.h>
  20. #include <stdio.h>
  21. #include <stdlib.h>
  22. #include <string.h>
  23. #include <math.h>
  24. #include <map>
  25. #include <algorithm>
  26. #include <set>
  27. #include <utility>
  28. #include <list>
  29. #include <stdexcept>
  30. #include "../version.h"
  31. #include "Cluster.hpp"
  32. #include "RuntimeEnvironment.hpp"
  33. #include "MulticastGroup.hpp"
  34. #include "CertificateOfMembership.hpp"
  35. #include "Salsa20.hpp"
  36. #include "Poly1305.hpp"
  37. #include "Identity.hpp"
  38. #include "Topology.hpp"
  39. #include "Packet.hpp"
  40. #include "Switch.hpp"
  41. #include "Node.hpp"
  42. #include "Array.hpp"
  43. namespace ZeroTier {
  44. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  45. throw()
  46. {
  47. double dx = ((double)x2 - (double)x1);
  48. double dy = ((double)y2 - (double)y1);
  49. double dz = ((double)z2 - (double)z1);
  50. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  51. }
  52. // An entry in _ClusterSendQueue
  53. struct _ClusterSendQueueEntry
  54. {
  55. uint64_t timestamp;
  56. Address fromPeerAddress;
  57. Address toPeerAddress;
  58. // if we ever support larger transport MTUs this must be increased
  59. unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
  60. unsigned int len;
  61. bool unite;
  62. };
  63. // A multi-index map with entry memory pooling -- this allows our queue to
  64. // be O(log(N)) and is complex enough that it makes the code a lot cleaner
  65. // to break it out from Cluster.
  66. class _ClusterSendQueue
  67. {
  68. public:
  69. _ClusterSendQueue() :
  70. _poolCount(0) {}
  71. ~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
  72. inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
  73. {
  74. if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
  75. return;
  76. Mutex::Lock _l(_lock);
  77. // Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
  78. {
  79. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
  80. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
  81. unsigned long countForSender = 0;
  82. while ((qi != _bySrc.end())&&(qi->first == from)) {
  83. if (qi->second->timestamp < oldest->second->timestamp)
  84. oldest = qi;
  85. ++countForSender;
  86. ++qi;
  87. }
  88. if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
  89. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
  90. _pool[_poolCount++] = oldest->second;
  91. _bySrc.erase(oldest);
  92. }
  93. }
  94. _ClusterSendQueueEntry *e;
  95. if (_poolCount > 0) {
  96. e = _pool[--_poolCount];
  97. } else {
  98. if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
  99. return; // queue is totally full!
  100. _chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
  101. e = &(_chunks.back().data[0]);
  102. for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
  103. _pool[_poolCount++] = &(_chunks.back().data[i]);
  104. }
  105. e->timestamp = now;
  106. e->fromPeerAddress = from;
  107. e->toPeerAddress = to;
  108. memcpy(e->data,data,len);
  109. e->len = len;
  110. e->unite = unite;
  111. _bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
  112. _byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
  113. }
  114. inline void expire(uint64_t now)
  115. {
  116. Mutex::Lock _l(_lock);
  117. for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
  118. if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
  119. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
  120. _pool[_poolCount++] = qi->second;
  121. _bySrc.erase(qi++);
  122. } else ++qi;
  123. }
  124. }
  125. /**
  126. * Get and dequeue entries for a given destination address
  127. *
  128. * After use these entries must be returned with returnToPool()!
  129. *
  130. * @param dest Destination address
  131. * @param results Array to fill with results
  132. * @param maxResults Size of results[] in pointers
  133. * @return Number of actual results returned
  134. */
  135. inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
  136. {
  137. unsigned int count = 0;
  138. Mutex::Lock _l(_lock);
  139. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
  140. while ((qi != _byDest.end())&&(qi->first == dest)) {
  141. _bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
  142. results[count++] = qi->second;
  143. if (count == maxResults)
  144. break;
  145. _byDest.erase(qi++);
  146. }
  147. return count;
  148. }
  149. /**
  150. * Return entries to pool after use
  151. *
  152. * @param entries Array of entries
  153. * @param count Number of entries
  154. */
  155. inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
  156. {
  157. Mutex::Lock _l(_lock);
  158. for(unsigned int i=0;i<count;++i)
  159. _pool[_poolCount++] = entries[i];
  160. }
  161. private:
  162. std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
  163. _ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
  164. unsigned long _poolCount;
  165. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
  166. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
  167. Mutex _lock;
  168. };
  169. Cluster::Cluster(
  170. const RuntimeEnvironment *renv,
  171. uint16_t id,
  172. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  173. int32_t x,
  174. int32_t y,
  175. int32_t z,
  176. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  177. void *sendFunctionArg,
  178. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  179. void *addressToLocationFunctionArg) :
  180. RR(renv),
  181. _sendQueue(new _ClusterSendQueue()),
  182. _sendFunction(sendFunction),
  183. _sendFunctionArg(sendFunctionArg),
  184. _addressToLocationFunction(addressToLocationFunction),
  185. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  186. _x(x),
  187. _y(y),
  188. _z(z),
  189. _id(id),
  190. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  191. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  192. _lastFlushed(0),
  193. _lastCleanedRemotePeers(0),
  194. _lastCleanedQueue(0)
  195. {
  196. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  197. // Generate master secret by hashing the secret from our Identity key pair
  198. RR->identity.sha512PrivateKey(_masterSecret);
  199. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  200. memcpy(stmp,_masterSecret,sizeof(stmp));
  201. stmp[0] ^= Utils::hton(id);
  202. SHA512::hash(stmp,stmp,sizeof(stmp));
  203. SHA512::hash(stmp,stmp,sizeof(stmp));
  204. memcpy(_key,stmp,sizeof(_key));
  205. Utils::burn(stmp,sizeof(stmp));
  206. }
  207. Cluster::~Cluster()
  208. {
  209. Utils::burn(_masterSecret,sizeof(_masterSecret));
  210. Utils::burn(_key,sizeof(_key));
  211. delete [] _members;
  212. delete _sendQueue;
  213. }
  214. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  215. {
  216. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  217. {
  218. // FORMAT: <[16] iv><[8] MAC><... data>
  219. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  220. return;
  221. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  222. char keytmp[32];
  223. memcpy(keytmp,_key,32);
  224. for(int i=0;i<8;++i)
  225. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  226. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  227. Utils::burn(keytmp,sizeof(keytmp));
  228. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  229. char polykey[ZT_POLY1305_KEY_LEN];
  230. memset(polykey,0,sizeof(polykey));
  231. s20.encrypt12(polykey,polykey,sizeof(polykey));
  232. // Compute 16-byte MAC
  233. char mac[ZT_POLY1305_MAC_LEN];
  234. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  235. // Check first 8 bytes of MAC against 64-bit MAC in stream
  236. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  237. return;
  238. // Decrypt!
  239. dmsg.setSize(len - 24);
  240. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  241. }
  242. if (dmsg.size() < 4)
  243. return;
  244. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  245. unsigned int ptr = 2;
  246. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  247. return;
  248. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  249. ptr += 2;
  250. if (toMemberId != _id) // sanity check: message not for us?
  251. return;
  252. { // make sure sender is actually considered a member
  253. Mutex::Lock _l3(_memberIds_m);
  254. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  255. return;
  256. }
  257. try {
  258. while (ptr < dmsg.size()) {
  259. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  260. const unsigned int nextPtr = ptr + mlen;
  261. if (nextPtr > dmsg.size())
  262. break;
  263. int mtype = -1;
  264. try {
  265. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  266. default:
  267. break;
  268. case CLUSTER_MESSAGE_ALIVE: {
  269. _Member &m = _members[fromMemberId];
  270. Mutex::Lock mlck(m.lock);
  271. ptr += 7; // skip version stuff, not used yet
  272. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  273. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  274. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  275. ptr += 8; // skip local clock, not used
  276. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  277. m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
  278. ptr += 8; // skip flags, unused
  279. #ifdef ZT_TRACE
  280. std::string addrs;
  281. #endif
  282. unsigned int physicalAddressCount = dmsg[ptr++];
  283. m.zeroTierPhysicalEndpoints.clear();
  284. for(unsigned int i=0;i<physicalAddressCount;++i) {
  285. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  286. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  287. if (!(m.zeroTierPhysicalEndpoints.back())) {
  288. m.zeroTierPhysicalEndpoints.pop_back();
  289. }
  290. #ifdef ZT_TRACE
  291. else {
  292. if (addrs.length() > 0)
  293. addrs.push_back(',');
  294. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  295. }
  296. #endif
  297. }
  298. #ifdef ZT_TRACE
  299. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  300. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  301. }
  302. #endif
  303. m.lastReceivedAliveAnnouncement = RR->node->now();
  304. } break;
  305. case CLUSTER_MESSAGE_HAVE_PEER: {
  306. Identity id;
  307. ptr += id.deserialize(dmsg,ptr);
  308. if (id) {
  309. RR->topology->saveIdentity(id);
  310. {
  311. Mutex::Lock _l(_remotePeers_m);
  312. _remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
  313. }
  314. _ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
  315. unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
  316. for(unsigned int i=0;i<qc;++i)
  317. this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
  318. _sendQueue->returnToPool(q,qc);
  319. TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
  320. }
  321. } break;
  322. case CLUSTER_MESSAGE_WANT_PEER: {
  323. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  324. SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
  325. if ( (peer) && (peer->hasClusterOptimalPath(RR->node->now())) ) {
  326. Buffer<1024> buf;
  327. peer->identity().serialize(buf);
  328. Mutex::Lock _l2(_members[fromMemberId].lock);
  329. _send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  330. }
  331. } break;
  332. case CLUSTER_MESSAGE_REMOTE_PACKET: {
  333. const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
  334. if (plen) {
  335. Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
  336. //TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
  337. switch(remotep.verb()) {
  338. case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
  339. case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
  340. default: break; // ignore things we don't care about across cluster
  341. }
  342. }
  343. } break;
  344. case CLUSTER_MESSAGE_PROXY_UNITE: {
  345. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  346. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  347. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  348. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  349. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  350. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  351. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  352. const uint64_t now = RR->node->now();
  353. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
  354. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  355. InetAddress bestLocalV4,bestLocalV6;
  356. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  357. InetAddress bestRemoteV4,bestRemoteV6;
  358. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  359. if ((bestRemoteV4)&&(bestRemoteV6))
  360. break;
  361. switch(remotePeerPaths[i].ss_family) {
  362. case AF_INET:
  363. if (!bestRemoteV4)
  364. bestRemoteV4 = remotePeerPaths[i];
  365. break;
  366. case AF_INET6:
  367. if (!bestRemoteV6)
  368. bestRemoteV6 = remotePeerPaths[i];
  369. break;
  370. }
  371. }
  372. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  373. rendezvousForLocal.append((uint8_t)0);
  374. remotePeerAddress.appendTo(rendezvousForLocal);
  375. Buffer<2048> rendezvousForRemote;
  376. remotePeerAddress.appendTo(rendezvousForRemote);
  377. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  378. rendezvousForRemote.addSize(2); // space for actual packet payload length
  379. rendezvousForRemote.append((uint8_t)0); // flags == 0
  380. localPeerAddress.appendTo(rendezvousForRemote);
  381. bool haveMatch = false;
  382. if ((bestLocalV6)&&(bestRemoteV6)) {
  383. haveMatch = true;
  384. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  385. rendezvousForLocal.append((uint8_t)16);
  386. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  387. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  388. rendezvousForRemote.append((uint8_t)16);
  389. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  390. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
  391. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  392. haveMatch = true;
  393. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  394. rendezvousForLocal.append((uint8_t)4);
  395. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  396. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  397. rendezvousForRemote.append((uint8_t)4);
  398. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  399. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
  400. }
  401. if (haveMatch) {
  402. {
  403. Mutex::Lock _l2(_members[fromMemberId].lock);
  404. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  405. }
  406. RR->sw->send(rendezvousForLocal,true,0);
  407. }
  408. }
  409. } break;
  410. case CLUSTER_MESSAGE_PROXY_SEND: {
  411. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  412. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  413. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  414. Packet outp(rcpt,RR->identity.address(),verb);
  415. outp.append(dmsg.field(ptr,len),len); ptr += len;
  416. RR->sw->send(outp,true,0);
  417. //TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  418. } break;
  419. }
  420. } catch ( ... ) {
  421. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  422. // drop invalids
  423. }
  424. ptr = nextPtr;
  425. }
  426. } catch ( ... ) {
  427. TRACE("invalid message (outer loop), discarding");
  428. // drop invalids
  429. }
  430. }
  431. void Cluster::broadcastHavePeer(const Identity &id)
  432. {
  433. Buffer<1024> buf;
  434. id.serialize(buf);
  435. Mutex::Lock _l(_memberIds_m);
  436. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  437. Mutex::Lock _l2(_members[*mid].lock);
  438. _send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  439. }
  440. }
  441. void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  442. {
  443. if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
  444. return;
  445. const uint64_t now = RR->node->now();
  446. uint64_t mostRecentTs = 0;
  447. unsigned int mostRecentMemberId = 0xffffffff;
  448. {
  449. Mutex::Lock _l2(_remotePeers_m);
  450. std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
  451. for(;;) {
  452. if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
  453. break;
  454. else if (rpe->second > mostRecentTs) {
  455. mostRecentTs = rpe->second;
  456. mostRecentMemberId = rpe->first.second;
  457. }
  458. ++rpe;
  459. }
  460. }
  461. const uint64_t age = now - mostRecentTs;
  462. if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
  463. const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));
  464. // Poll everyone with WANT_PEER if the age of our most recent entry is
  465. // approaching expiration (or has expired, or does not exist).
  466. char tmp[ZT_ADDRESS_LENGTH];
  467. toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
  468. {
  469. Mutex::Lock _l(_memberIds_m);
  470. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  471. Mutex::Lock _l2(_members[*mid].lock);
  472. _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
  473. }
  474. }
  475. // If there isn't a good place to send via, then enqueue this for retrying
  476. // later and return after having broadcasted a WANT_PEER.
  477. if (enqueueAndWait) {
  478. TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  479. _sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
  480. return;
  481. }
  482. }
  483. Buffer<1024> buf;
  484. if (unite) {
  485. InetAddress v4,v6;
  486. if (fromPeerAddress) {
  487. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
  488. if (fromPeer)
  489. fromPeer->getBestActiveAddresses(now,v4,v6);
  490. }
  491. uint8_t addrCount = 0;
  492. if (v4)
  493. ++addrCount;
  494. if (v6)
  495. ++addrCount;
  496. if (addrCount) {
  497. toPeerAddress.appendTo(buf);
  498. fromPeerAddress.appendTo(buf);
  499. buf.append(addrCount);
  500. if (v4)
  501. v4.serialize(buf);
  502. if (v6)
  503. v6.serialize(buf);
  504. }
  505. }
  506. {
  507. Mutex::Lock _l2(_members[mostRecentMemberId].lock);
  508. if (buf.size() > 0)
  509. _send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  510. for(std::vector<InetAddress>::const_iterator i1(_zeroTierPhysicalEndpoints.begin());i1!=_zeroTierPhysicalEndpoints.end();++i1) {
  511. for(std::vector<InetAddress>::const_iterator i2(_members[mostRecentMemberId].zeroTierPhysicalEndpoints.begin());i2!=_members[mostRecentMemberId].zeroTierPhysicalEndpoints.end();++i2) {
  512. if (i1->ss_family == i2->ss_family) {
  513. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u (%s->%s)",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId,i1->toString().c_str(),i2->toString().c_str());
  514. RR->node->putPacket(*i1,*i2,data,len);
  515. return;
  516. }
  517. }
  518. }
  519. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u failed: no common endpoints with the same address family!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
  520. return;
  521. }
  522. }
  523. void Cluster::sendDistributedQuery(const Packet &pkt)
  524. {
  525. Buffer<4096> buf;
  526. buf.append((uint16_t)pkt.size());
  527. buf.append(pkt.data(),pkt.size());
  528. Mutex::Lock _l(_memberIds_m);
  529. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  530. Mutex::Lock _l2(_members[*mid].lock);
  531. _send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
  532. }
  533. }
  534. void Cluster::doPeriodicTasks()
  535. {
  536. const uint64_t now = RR->node->now();
  537. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  538. _lastFlushed = now;
  539. Mutex::Lock _l(_memberIds_m);
  540. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  541. Mutex::Lock _l2(_members[*mid].lock);
  542. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  543. _members[*mid].lastAnnouncedAliveTo = now;
  544. Buffer<2048> alive;
  545. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  546. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  547. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  548. alive.append((uint8_t)ZT_PROTO_VERSION);
  549. if (_addressToLocationFunction) {
  550. alive.append((int32_t)_x);
  551. alive.append((int32_t)_y);
  552. alive.append((int32_t)_z);
  553. } else {
  554. alive.append((int32_t)0);
  555. alive.append((int32_t)0);
  556. alive.append((int32_t)0);
  557. }
  558. alive.append((uint64_t)now);
  559. alive.append((uint64_t)0); // TODO: compute and send load average
  560. alive.append((uint64_t)RR->topology->countActive(now));
  561. alive.append((uint64_t)0); // unused/reserved flags
  562. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  563. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  564. pe->serialize(alive);
  565. _send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
  566. }
  567. _flush(*mid);
  568. }
  569. }
  570. if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
  571. _lastCleanedRemotePeers = now;
  572. Mutex::Lock _l(_remotePeers_m);
  573. for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
  574. if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
  575. _remotePeers.erase(rp++);
  576. else ++rp;
  577. }
  578. }
  579. if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
  580. _lastCleanedQueue = now;
  581. _sendQueue->expire(now);
  582. }
  583. }
  584. void Cluster::addMember(uint16_t memberId)
  585. {
  586. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  587. return;
  588. Mutex::Lock _l2(_members[memberId].lock);
  589. {
  590. Mutex::Lock _l(_memberIds_m);
  591. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  592. return;
  593. _memberIds.push_back(memberId);
  594. std::sort(_memberIds.begin(),_memberIds.end());
  595. }
  596. _members[memberId].clear();
  597. // Generate this member's message key from the master and its ID
  598. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  599. memcpy(stmp,_masterSecret,sizeof(stmp));
  600. stmp[0] ^= Utils::hton(memberId);
  601. SHA512::hash(stmp,stmp,sizeof(stmp));
  602. SHA512::hash(stmp,stmp,sizeof(stmp));
  603. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  604. Utils::burn(stmp,sizeof(stmp));
  605. // Prepare q
  606. _members[memberId].q.clear();
  607. char iv[16];
  608. Utils::getSecureRandom(iv,16);
  609. _members[memberId].q.append(iv,16);
  610. _members[memberId].q.addSize(8); // room for MAC
  611. _members[memberId].q.append((uint16_t)_id);
  612. _members[memberId].q.append((uint16_t)memberId);
  613. }
  614. void Cluster::removeMember(uint16_t memberId)
  615. {
  616. Mutex::Lock _l(_memberIds_m);
  617. std::vector<uint16_t> newMemberIds;
  618. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  619. if (*mid != memberId)
  620. newMemberIds.push_back(*mid);
  621. }
  622. _memberIds = newMemberIds;
  623. }
  624. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  625. {
  626. if (_addressToLocationFunction) {
  627. // Pick based on location if it can be determined
  628. int px = 0,py = 0,pz = 0;
  629. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  630. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  631. return false;
  632. }
  633. // Find member closest to this peer
  634. const uint64_t now = RR->node->now();
  635. std::vector<InetAddress> best;
  636. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  637. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  638. unsigned int bestMember = _id;
  639. {
  640. Mutex::Lock _l(_memberIds_m);
  641. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  642. _Member &m = _members[*mid];
  643. Mutex::Lock _ml(m.lock);
  644. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  645. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  646. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  647. if (mdist < bestDistance) {
  648. bestDistance = mdist;
  649. bestMember = *mid;
  650. best = m.zeroTierPhysicalEndpoints;
  651. }
  652. }
  653. }
  654. }
  655. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  656. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  657. if (a->ss_family == peerPhysicalAddress.ss_family) {
  658. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  659. redirectTo = *a;
  660. return true;
  661. }
  662. }
  663. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  664. return false;
  665. } else {
  666. // TODO: pick based on load if no location info?
  667. return false;
  668. }
  669. }
  670. void Cluster::status(ZT_ClusterStatus &status) const
  671. {
  672. const uint64_t now = RR->node->now();
  673. memset(&status,0,sizeof(ZT_ClusterStatus));
  674. status.myId = _id;
  675. {
  676. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  677. s->id = _id;
  678. s->alive = 1;
  679. s->x = _x;
  680. s->y = _y;
  681. s->z = _z;
  682. s->load = 0; // TODO
  683. s->peers = RR->topology->countActive(now);
  684. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  685. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  686. break;
  687. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  688. }
  689. }
  690. {
  691. Mutex::Lock _l1(_memberIds_m);
  692. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  693. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  694. break;
  695. _Member &m = _members[*mid];
  696. Mutex::Lock ml(m.lock);
  697. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  698. s->id = *mid;
  699. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  700. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  701. s->x = m.x;
  702. s->y = m.y;
  703. s->z = m.z;
  704. s->load = m.load;
  705. s->peers = m.peers;
  706. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  707. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  708. break;
  709. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  710. }
  711. }
  712. }
  713. }
  714. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  715. {
  716. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  717. return;
  718. _Member &m = _members[memberId];
  719. // assumes m.lock is locked!
  720. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  721. _flush(memberId);
  722. m.q.append((uint16_t)(len + 1));
  723. m.q.append((uint8_t)type);
  724. m.q.append(msg,len);
  725. }
  726. void Cluster::_flush(uint16_t memberId)
  727. {
  728. _Member &m = _members[memberId];
  729. // assumes m.lock is locked!
  730. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  731. // Create key from member's key and IV
  732. char keytmp[32];
  733. memcpy(keytmp,m.key,32);
  734. for(int i=0;i<8;++i)
  735. keytmp[i] ^= m.q[i];
  736. Salsa20 s20(keytmp,256,m.q.field(8,8));
  737. Utils::burn(keytmp,sizeof(keytmp));
  738. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  739. char polykey[ZT_POLY1305_KEY_LEN];
  740. memset(polykey,0,sizeof(polykey));
  741. s20.encrypt12(polykey,polykey,sizeof(polykey));
  742. // Encrypt m.q in place
  743. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  744. // Add MAC for authentication (encrypt-then-MAC)
  745. char mac[ZT_POLY1305_MAC_LEN];
  746. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  747. memcpy(m.q.field(16,8),mac,8);
  748. // Send!
  749. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  750. // Prepare for more
  751. m.q.clear();
  752. char iv[16];
  753. Utils::getSecureRandom(iv,16);
  754. m.q.append(iv,16);
  755. m.q.addSize(8); // room for MAC
  756. m.q.append((uint16_t)_id); // from member ID
  757. m.q.append((uint16_t)memberId); // to member ID
  758. }
  759. }
  760. void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
  761. {
  762. if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
  763. Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
  764. if (queried) {
  765. Buffer<1024> routp;
  766. remotep.source().appendTo(routp);
  767. routp.append((uint8_t)Packet::VERB_OK);
  768. routp.addSize(2); // space for length
  769. routp.append((uint8_t)Packet::VERB_WHOIS);
  770. routp.append(remotep.packetId());
  771. queried.serialize(routp);
  772. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  773. TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
  774. Mutex::Lock _l2(_members[fromMemberId].lock);
  775. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  776. }
  777. }
  778. }
  779. void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
  780. {
  781. const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  782. const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  783. unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  784. const Address remotePeerAddress(remotep.source());
  785. if (gatherLimit) {
  786. Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
  787. remotePeerAddress.appendTo(routp);
  788. routp.append((uint8_t)Packet::VERB_OK);
  789. routp.addSize(2); // space for length
  790. routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  791. routp.append(remotep.packetId());
  792. routp.append(nwid);
  793. mg.mac().appendTo(routp);
  794. routp.append((uint32_t)mg.adi());
  795. if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
  796. gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
  797. if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
  798. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  799. TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
  800. Mutex::Lock _l2(_members[fromMemberId].lock);
  801. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  802. }
  803. }
  804. }
  805. } // namespace ZeroTier
  806. #endif // ZT_ENABLE_CLUSTER