123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- /* $NetBSD: algor.cc,v 1.1 2003/12/27 01:16:55 christos Exp $ */
- /*-
- * Copyright (c) 2003 The NetBSD Foundation, Inc.
- * All rights reserved.
- *
- * This code is derived from software contributed to The NetBSD Foundation
- * by Christos Zoulas.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the NetBSD
- * Foundation, Inc. and its contributors.
- * 4. Neither the name of The NetBSD Foundation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * algor.C: Computer algorithm
- */
- #include "defs.h"
- RCSID("$NetBSD: algor.cc,v 1.1 2003/12/27 01:16:55 christos Exp $")
- #include "algor.h"
- #include "board.h"
- #include "box.h"
- #include "random.h"
- ALGOR::ALGOR(const char c) : PLAYER(c)
- {
- #ifdef notyet
- // Single Edges = (x + y) * 2
- _edge1 = (_b.nx() * _b.ny()) * 2;
- // Shared Edges = (x * (y - 1)) + ((x - 1) * y)
- _edge2 = (_b.nx() * (_b.ny() - 1)) + ((_b.nx() - 1) * _b.ny());
- // Maximum Edges filled before closure = x * y * 2
- _maxedge = _b.nx() * _b.ny() * 2;
- #endif
- }
- // Find the first closure, i.e. a box that has 3 edges
- int ALGOR::find_closure(size_t& y, size_t& x, int& dir, BOARD& b)
- {
- RANDOM rdy(b.ny()), rdx(b.nx());
- for (y = rdy(); y < b.ny(); y = rdy()) {
- rdx.clear();
- for (x = rdx(); x < b.nx(); x = rdx()) {
- BOX box(y, x, b);
- if (box.count() == 3) {
- for (dir = BOX::first; dir < BOX::last; dir++)
- if (!box.isset(dir))
- return 1;
- b.abort("find_closure: 3 sided box[%d,%d] has no free sides",
- y, x);
- }
- }
- }
- return 0;
- }
- #if 0
- size_t ALGOR::find_single()
- {
- size_t ne;
- // Find the number of single edges in use
- for (size_t x = 0; x < b.nx(); x++) {
- BOX tbox(0, x, b);
- ne += tbox.isset(BOX::top);
- BOX bbox(b.ny() - 1, x, b);
- ne += bbox.isset(BOX::bottom);
- }
- for (size_t y = 0; y < _b.ny(); y++) {
- BOX lbox(y, 0, b);
- ne += lbox.isset(BOX::left);
- BOX rbox(y,_b.nx() - 1, b);
- ne += rbox.isset(BOX::right);
- }
- return ne;
- }
- #endif
- // Count a closure, by counting all boxes that we can close in the current
- // move
- size_t ALGOR::count_closure(size_t& y, size_t& x, int& dir, BOARD& b)
- {
- size_t i = 0;
- size_t tx, ty;
- int tdir, mv;
- while (find_closure(ty, tx, tdir, b)) {
- if (i == 0) {
- // Mark the beginning of the closure
- x = tx;
- y = ty;
- dir = tdir;
- }
- if ((mv = b.domove(ty, tx, tdir, getWho())) == -1)
- b.abort("count_closure: Invalid move (%d, %d, %d)", y, x, dir);
- else
- i += mv;
- }
- return i;
- }
- /*
- * Find the largest closure, by closing all possible closures.
- * return the number of boxes closed in the maximum closure,
- * and the first box of the maximum closure in (x, y, dir)
- */
- int ALGOR::find_max_closure(size_t& y, size_t& x, int& dir, const BOARD& b)
- {
- BOARD nb(b);
- int tdir, maxdir = -1;
- size_t nbox, maxbox = 0;
- size_t tx, ty, maxx = ~0, maxy = ~0;
- while ((nbox = count_closure(ty, tx, tdir, nb)) != 0)
- if (nbox > maxbox) {
- // This closure is better, update max
- maxbox = nbox;
- maxx = tx;
- maxy = ty;
- maxdir = tdir;
- }
- // Return the max found
- y = maxy;
- x = maxx;
- dir = maxdir;
- return maxbox;
- }
- // Find if a turn does not result in a capture on the given box
- // and return the direction if found.
- int ALGOR::try_good_turn(BOX& box, size_t y, size_t x, int& dir, BOARD& b)
- {
- // Sanity check; we must have a good box
- if (box.count() >= 2)
- b.abort("try_good_turn: box[%d,%d] has more than 2 sides occupied",
- y, x);
- // Make sure we don't make a closure in an adjacent box.
- // We use a random direction to randomize the game
- RANDOM rd(BOX::last);
- for (dir = rd(); dir < BOX::last; dir = rd())
- if (!box.isset(dir)) {
- size_t by = y + BOX::edges[dir].y;
- size_t bx = x + BOX::edges[dir].x;
- if (!b.bounds(by, bx))
- return 1;
- BOX nbox(by, bx, b);
- if (nbox.count() < 2)
- return 1;
- }
- return 0;
- }
- // Try to find a turn that does not result in an opponent closure, and
- // return it in (x, y, dir); if not found return 0.
- int ALGOR::find_good_turn(size_t& y, size_t& x, int& dir, const BOARD& b)
- {
- BOARD nb(b);
- RANDOM rdy(b.ny()), rdx(b.nx());
- for (y = rdy(); y < b.ny(); y = rdy()) {
- rdx.clear();
- for (x = rdx(); x < b.nx(); x = rdx()) {
- BOX box(y, x, nb);
- if (box.count() < 2 && try_good_turn(box, y, x, dir, nb))
- return 1;
- }
- }
- return 0;
- }
- // On a box with 2 edges, return the first or the last free edge, depending
- // on the order specified
- int ALGOR::try_bad_turn(BOX& box, size_t& y, size_t& x, int& dir, BOARD& b,
- int last)
- {
- if (4 - box.count() <= last)
- b.abort("try_bad_turn: Called at [%d,%d] for %d with %d",
- y, x, last, box.count());
- for (dir = BOX::first; dir < BOX::last; dir++)
- if (!box.isset(dir)) {
- if (!last)
- return 1;
- else
- last--;
- }
- return 0;
- }
- // Find a box that has 2 edges and return the first free edge of that
- // box or the last free edge of that box
- int ALGOR::find_bad_turn(size_t& y, size_t& x, int& dir, BOARD& b, int last)
- {
- RANDOM rdy(b.ny()), rdx(b.nx());
- for (y = rdy(); y < b.ny(); y = rdy()) {
- rdx.clear();
- for (x = rdx(); x < b.nx(); x = rdx()) {
- BOX box(y, x, b);
- if ((4 - box.count()) > last &&
- try_bad_turn(box, y, x, dir, b, last))
- return 1;
- }
- }
- return 0;
- }
- int ALGOR::find_min_closure1(size_t& y, size_t& x, int& dir, const BOARD& b,
- int last)
- {
- BOARD nb(b);
- int tdir, mindir = -1, xdir, mv;
- // number of boxes per closure
- size_t nbox, minbox = nb.nx() * nb.ny() + 1;
- size_t tx, ty, minx = ~0, miny = ~0;
- while (find_bad_turn(ty, tx, tdir, nb, last)) {
- // Play a bad move that would cause the opponent's closure
- if ((mv = nb.domove(ty, tx, tdir, getWho())) != 0)
- b.abort("find_min_closure1: Invalid move %d (%d, %d, %d)", mv,
- ty, tx, tdir);
- // Count the opponent's closure
- if ((nbox = count_closure(y, x, xdir, nb)) == 0)
- b.abort("find_min_closure1: no closure found");
- if (nbox <= minbox) {
- // This closure has fewer boxes
- minbox = nbox;
- minx = tx;
- miny = ty;
- mindir = tdir;
- }
- }
- y = miny;
- x = minx;
- dir = mindir;
- return minbox;
- }
- // Search for the move that makes the opponent close the least number of
- // boxes; returns 1 if a move found, 0 otherwise
- int ALGOR::find_min_closure(size_t& y, size_t& x, int& dir, const BOARD& b)
- {
- size_t x1, y1;
- int dir1;
- int count = b.ny() * b.nx() + 1, count1;
- for (size_t i = 0; i < 3; i++)
- if (count > (count1 = find_min_closure1(y1, x1, dir1, b, i))) {
- count = count1;
- y = y1;
- x = x1;
- dir = dir1;
- }
- return (size_t) count != b.ny() * b.nx() + 1;
- }
- // Return a move in (y, x, dir)
- void ALGOR::play(const BOARD& b, size_t& y, size_t& x, int& dir)
- {
- // See if we can close the largest closure available
- if (find_max_closure(y, x, dir, b))
- return;
- #ifdef notyet
- size_t sgl = find_single();
- size_t dbl = find_double();
- #endif
- // See if we can play an edge without giving the opponent a box
- if (find_good_turn(y, x, dir, b))
- return;
- // Too bad, find the move that gives the opponent the fewer boxes
- if (find_min_closure(y, x, dir, b))
- return;
- }
|