Verifier.sol 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. /**
  2. *Submitted for verification at Etherscan.io on 2020-05-12
  3. */
  4. // https://tornado.cash Verifier.sol generated by trusted setup ceremony.
  5. /*
  6. * d888888P dP a88888b. dP
  7. * 88 88 d8' `88 88
  8. * 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b.
  9. * 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88
  10. * 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88
  11. * dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP
  12. * ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
  13. */
  14. // SPDX-License-Identifier: MIT
  15. // Copyright 2017 Christian Reitwiessner
  16. // Permission is hereby granted, free of charge, to any person obtaining a copy
  17. // of this software and associated documentation files (the "Software"), to
  18. // deal in the Software without restriction, including without limitation the
  19. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  20. // sell copies of the Software, and to permit persons to whom the Software is
  21. // furnished to do so, subject to the following conditions:
  22. // The above copyright notice and this permission notice shall be included in
  23. // all copies or substantial portions of the Software.
  24. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  25. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  26. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  27. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  28. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  29. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  30. // IN THE SOFTWARE.
  31. // 2019 OKIMS
  32. pragma solidity ^0.7.0;
  33. library Pairing {
  34. uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
  35. struct G1Point {
  36. uint256 X;
  37. uint256 Y;
  38. }
  39. // Encoding of field elements is: X[0] * z + X[1]
  40. struct G2Point {
  41. uint256[2] X;
  42. uint256[2] Y;
  43. }
  44. /*
  45. * @return The negation of p, i.e. p.plus(p.negate()) should be zero.
  46. */
  47. function negate(G1Point memory p) internal pure returns (G1Point memory) {
  48. // The prime q in the base field F_q for G1
  49. if (p.X == 0 && p.Y == 0) {
  50. return G1Point(0, 0);
  51. } else {
  52. return G1Point(p.X, PRIME_Q - (p.Y % PRIME_Q));
  53. }
  54. }
  55. /*
  56. * @return r the sum of two points of G1
  57. */
  58. function plus(
  59. G1Point memory p1,
  60. G1Point memory p2
  61. ) internal view returns (G1Point memory r) {
  62. uint256[4] memory input;
  63. input[0] = p1.X;
  64. input[1] = p1.Y;
  65. input[2] = p2.X;
  66. input[3] = p2.Y;
  67. bool success;
  68. // solium-disable-next-line security/no-inline-assembly
  69. assembly {
  70. success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
  71. // Use "invalid" to make gas estimation work
  72. switch success case 0 { invalid() }
  73. }
  74. require(success, "pairing-add-failed");
  75. }
  76. /*
  77. * @return r the product of a point on G1 and a scalar, i.e.
  78. * p == p.scalar_mul(1) and p.plus(p) == p.scalar_mul(2) for all
  79. * points p.
  80. */
  81. function scalar_mul(G1Point memory p, uint256 s) internal view returns (G1Point memory r) {
  82. uint256[3] memory input;
  83. input[0] = p.X;
  84. input[1] = p.Y;
  85. input[2] = s;
  86. bool success;
  87. // solium-disable-next-line security/no-inline-assembly
  88. assembly {
  89. success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
  90. // Use "invalid" to make gas estimation work
  91. switch success case 0 { invalid() }
  92. }
  93. require(success, "pairing-mul-failed");
  94. }
  95. /* @return The result of computing the pairing check
  96. * e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
  97. * For example,
  98. * pairing([P1(), P1().negate()], [P2(), P2()]) should return true.
  99. */
  100. function pairing(
  101. G1Point memory a1,
  102. G2Point memory a2,
  103. G1Point memory b1,
  104. G2Point memory b2,
  105. G1Point memory c1,
  106. G2Point memory c2,
  107. G1Point memory d1,
  108. G2Point memory d2
  109. ) internal view returns (bool) {
  110. G1Point[4] memory p1 = [a1, b1, c1, d1];
  111. G2Point[4] memory p2 = [a2, b2, c2, d2];
  112. uint256 inputSize = 24;
  113. uint256[] memory input = new uint256[](inputSize);
  114. for (uint256 i = 0; i < 4; i++) {
  115. uint256 j = i * 6;
  116. input[j + 0] = p1[i].X;
  117. input[j + 1] = p1[i].Y;
  118. input[j + 2] = p2[i].X[0];
  119. input[j + 3] = p2[i].X[1];
  120. input[j + 4] = p2[i].Y[0];
  121. input[j + 5] = p2[i].Y[1];
  122. }
  123. uint256[1] memory out;
  124. bool success;
  125. // solium-disable-next-line security/no-inline-assembly
  126. assembly {
  127. success := staticcall(sub(gas(), 2000), 8, add(input, 0x20), mul(inputSize, 0x20), out, 0x20)
  128. // Use "invalid" to make gas estimation work
  129. switch success case 0 { invalid() }
  130. }
  131. require(success, "pairing-opcode-failed");
  132. return out[0] != 0;
  133. }
  134. }
  135. contract Verifier {
  136. uint256 constant SNARK_SCALAR_FIELD = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
  137. uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
  138. using Pairing for *;
  139. struct VerifyingKey {
  140. Pairing.G1Point alfa1;
  141. Pairing.G2Point beta2;
  142. Pairing.G2Point gamma2;
  143. Pairing.G2Point delta2;
  144. Pairing.G1Point[7] IC;
  145. }
  146. struct Proof {
  147. Pairing.G1Point A;
  148. Pairing.G2Point B;
  149. Pairing.G1Point C;
  150. }
  151. function verifyingKey() internal pure returns (VerifyingKey memory vk) {
  152. vk.alfa1 = Pairing.G1Point(uint256(20692898189092739278193869274495556617788530808486270118371701516666252877969), uint256(11713062878292653967971378194351968039596396853904572879488166084231740557279));
  153. vk.beta2 = Pairing.G2Point([uint256(12168528810181263706895252315640534818222943348193302139358377162645029937006), uint256(281120578337195720357474965979947690431622127986816839208576358024608803542)], [uint256(16129176515713072042442734839012966563817890688785805090011011570989315559913), uint256(9011703453772030375124466642203641636825223906145908770308724549646909480510)]);
  154. vk.gamma2 = Pairing.G2Point([uint256(11559732032986387107991004021392285783925812861821192530917403151452391805634), uint256(10857046999023057135944570762232829481370756359578518086990519993285655852781)], [uint256(4082367875863433681332203403145435568316851327593401208105741076214120093531), uint256(8495653923123431417604973247489272438418190587263600148770280649306958101930)]);
  155. vk.delta2 = Pairing.G2Point([uint256(21280594949518992153305586783242820682644996932183186320680800072133486887432), uint256(150879136433974552800030963899771162647715069685890547489132178314736470662)], [uint256(1081836006956609894549771334721413187913047383331561601606260283167615953295), uint256(11434086686358152335540554643130007307617078324975981257823476472104616196090)]);
  156. vk.IC[0] = Pairing.G1Point(uint256(16225148364316337376768119297456868908427925829817748684139175309620217098814), uint256(5167268689450204162046084442581051565997733233062478317813755636162413164690));
  157. vk.IC[1] = Pairing.G1Point(uint256(12882377842072682264979317445365303375159828272423495088911985689463022094260), uint256(19488215856665173565526758360510125932214252767275816329232454875804474844786));
  158. vk.IC[2] = Pairing.G1Point(uint256(13083492661683431044045992285476184182144099829507350352128615182516530014777), uint256(602051281796153692392523702676782023472744522032670801091617246498551238913));
  159. vk.IC[3] = Pairing.G1Point(uint256(9732465972180335629969421513785602934706096902316483580882842789662669212890), uint256(2776526698606888434074200384264824461688198384989521091253289776235602495678));
  160. vk.IC[4] = Pairing.G1Point(uint256(8586364274534577154894611080234048648883781955345622578531233113180532234842), uint256(21276134929883121123323359450658320820075698490666870487450985603988214349407));
  161. vk.IC[5] = Pairing.G1Point(uint256(4910628533171597675018724709631788948355422829499855033965018665300386637884), uint256(20532468890024084510431799098097081600480376127870299142189696620752500664302));
  162. vk.IC[6] = Pairing.G1Point(uint256(15335858102289947642505450692012116222827233918185150176888641903531542034017), uint256(5311597067667671581646709998171703828965875677637292315055030353779531404812));
  163. }
  164. /*
  165. * @returns Whether the proof is valid given the hardcoded verifying key
  166. * above and the public inputs
  167. */
  168. function verifyProof(
  169. bytes memory proof,
  170. uint256[6] memory input
  171. ) public view returns (bool) {
  172. uint256[8] memory p = abi.decode(proof, (uint256[8]));
  173. // Make sure that each element in the proof is less than the prime q
  174. for (uint8 i = 0; i < p.length; i++) {
  175. require(p[i] < PRIME_Q, "verifier-proof-element-gte-prime-q");
  176. }
  177. Proof memory _proof;
  178. _proof.A = Pairing.G1Point(p[0], p[1]);
  179. _proof.B = Pairing.G2Point([p[2], p[3]], [p[4], p[5]]);
  180. _proof.C = Pairing.G1Point(p[6], p[7]);
  181. VerifyingKey memory vk = verifyingKey();
  182. // Compute the linear combination vk_x
  183. Pairing.G1Point memory vk_x = Pairing.G1Point(0, 0);
  184. vk_x = Pairing.plus(vk_x, vk.IC[0]);
  185. // Make sure that every input is less than the snark scalar field
  186. for (uint256 i = 0; i < input.length; i++) {
  187. require(input[i] < SNARK_SCALAR_FIELD, "verifier-gte-snark-scalar-field");
  188. vk_x = Pairing.plus(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i]));
  189. }
  190. return Pairing.pairing(
  191. Pairing.negate(_proof.A),
  192. _proof.B,
  193. vk.alfa1,
  194. vk.beta2,
  195. vk_x,
  196. vk.gamma2,
  197. _proof.C,
  198. vk.delta2
  199. );
  200. }
  201. }