solution.scm 3.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. ;; https://projecteuler.net/problem=8
  2. ;; Largest product in a series
  3. ;; Problem 8
  4. ;; The four adjacent digits in the 1000-digit number that
  5. ;; have the greatest product are 9 × 9 × 8 × 9 = 5832.
  6. ;; 73167176531330624919225119674426574742355349194934
  7. ;; 96983520312774506326239578318016984801869478851843
  8. ;; 85861560789112949495459501737958331952853208805511
  9. ;; 12540698747158523863050715693290963295227443043557
  10. ;; 66896648950445244523161731856403098711121722383113
  11. ;; 62229893423380308135336276614282806444486645238749
  12. ;; 30358907296290491560440772390713810515859307960866
  13. ;; 70172427121883998797908792274921901699720888093776
  14. ;; 65727333001053367881220235421809751254540594752243
  15. ;; 52584907711670556013604839586446706324415722155397
  16. ;; 53697817977846174064955149290862569321978468622482
  17. ;; 83972241375657056057490261407972968652414535100474
  18. ;; 82166370484403199890008895243450658541227588666881
  19. ;; 16427171479924442928230863465674813919123162824586
  20. ;; 17866458359124566529476545682848912883142607690042
  21. ;; 24219022671055626321111109370544217506941658960408
  22. ;; 07198403850962455444362981230987879927244284909188
  23. ;; 84580156166097919133875499200524063689912560717606
  24. ;; 05886116467109405077541002256983155200055935729725
  25. ;; 71636269561882670428252483600823257530420752963450
  26. ;; Find the thirteen adjacent digits in the 1000-digit
  27. ;; number that have the greatest product. What is the value
  28. ;; of this product?
  29. (import
  30. (except (rnrs base) let-values)
  31. (only (guile) lambda* λ))
  32. (define %number-string
  33. "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450")
  34. (define char->number
  35. (λ (c)
  36. (string->number (list->string (list c)))))
  37. (define calculate-product
  38. (λ (digits-as-string)
  39. (string-fold (λ (a b)
  40. (* (char->number a) b))
  41. 1
  42. digits-as-string)))
  43. (define find-largest-product
  44. (λ (number-as-string digit-count)
  45. (let ([num-len (string-length number-as-string)])
  46. ;; Can this be made more readable / simpler?
  47. (let loop ([pos 0] [previous-maximum 0])
  48. (cond
  49. [(>= (+ pos digit-count) num-len)
  50. previous-maximum]
  51. [else
  52. (let ([digits-as-string
  53. (substring number-as-string
  54. pos
  55. (+ pos digit-count))])
  56. (cond
  57. [(string-contains digits-as-string "0")
  58. (loop (+ pos 1) previous-maximum)]
  59. [else
  60. (display (simple-format #f "position: ~a\n" pos))
  61. (display (simple-format #f "digits: ~a\n" digits-as-string))
  62. (display (simple-format #f "product: ~a\n" (calculate-product digits-as-string)))
  63. (loop (+ pos 1)
  64. (max previous-maximum
  65. (calculate-product digits-as-string)))]))])))))
  66. (find-largest-product %number-string 13) ; 23514624000