
Journal of Theoretical and Applied Computer Science Vol. 8, No. 4, 2014, pp. 64–71
ISSN 2299-2634 (printed), 2300-5653 (online) http://www.jtacs.org

Using bitboards for move generation in chess for three

Jacek Klimaszewski
Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Szczecin,
Poland

jklimaszewski@wi.zut.edu.pl

Abstract: “Chess for three” is an interesting chess variant, but it is still a bit underrated. This paper de-
scribes game rules shortly and proposes bitboard representation, which can be used by a com-
puter chess program in the move generation procedure. Top-rated chess programs (e.g. Stockfish,
Rybka) use it, therefore author decided to adapt it in hope of getting similar performance. Array
representation is also discussed to show its drawbacks in this case.

Keywords: bitboard, chess for three, computer chess

1. Introduction

Figure 1. Initial position in chess for three
(red pieces are marked as grey).

The chess game from its beginning has
been evolving — many variants appeared,
such as chinese chess (Xiangqi), Chess960 et
caetera [1]. However, for a long time chess
was still a two-player game. The first known
attempt of involving a third player dates back
to the year 1722, when Philip Marinelli pub-
lished his idea [2]. In the nineties of 20th
century Polish variant, based on the idea of
Jacek Filek, came into existence [3]. Inclu-
sion of the third player has varied game sig-
nificantly, causing the gameplay to become
more dynamic, because there is only one win-
ner, hence sometimes one player has to help
another player to avoid defeat. Even though
more than 20 years passed, this chess variant is not so popular yet.

Computer chess program that plays this chess variant could raise its popularity. To make
writing of the computer chess program easier, bitboard representation is proposed because
of its high performance in the move generation task. With an efficient board representation,
people may attempt to write a tree-search procedure and an evaluation function.

The outline of the article is as follows. Section 2 puts forward a game rules of chess for
three. In the Section 3 array representation is analysed briefly and bitboard representation is
described. Section 4 presents results based on a number of visited nodes in the game tree. The
article concludes with an outlook on future work.

Using bitboards for move generation in chess for three 65

2. Game rules
The game is played on the board with 96 squares, alternatingly dark and white (Figure 1).

Each player has 16 pieces, the same as in the traditional chess, and they move in the same way
as standard chess pieces. Untypical board shape makes some of them more mobile (Figure 2,
3, 4, 5, 6, 7).

Figure 2. Pawn’s moves (× denotes capture). Figure 3. Knight’s moves (× — black knight).

Figure 4. Bishop’s moves. Figure 5. Rook’s moves.

Figure 6. Queen’s moves. Figure 7. King’s moves.

66 Jacek Klimaszewski

Before the game starts, red player may exchange positions of a red king and a red queen.
Red makes the first move, the next move is made by white, then black makes the next move
and so forth. The game lasts until one of the players is checkmated or a draw occurs (by
stalemate, by repetition and so on).

Other rules (castling, pawn promotion) are the same with exception of en passant, which
does not exist in this chess variant. More information about the game may be found in [3].

3. Bitboard representation in chess for three

Figure 8. Square-to-index projection.

Figure 9. Square-to-bit projection.

Untypical shape of the chessboard
hampers usage of an array as a storage of
the position. Everyone may notice, that
it is not obvious how to map squares to
indices — in case of traditional chess-
board it is far more intuitive; also some
improved array representations exists for
it [4]. Exemplary projection, which is
used later, is depicted on the Figure 8.
It is some compromise between ease of
move generation for one side and com-
plication for the other sides. Of course,
other projections exist that have different
advantages and disadvantages.

Because of this difficulty, array rep-
resentation was not considered anymore
and work focused on finding more suit-
able bitboard representation. The idea
of using bitmaps to represent positional
information is not new [5]. Probably
the first chess program that used them
was Kaissa, written by Russian program-
mers, which won the first World Com-
puter Chess Championship in Stockholm
[6].

As can be seen, chessboard contains
96 squares, so 96 bits are needed. None
of the predefined types in C++ has the
size of 96 bits. To overcome this problem, three variables of type unsigned int can be used, but
a much better idea is to use an array of 3 integers [7]. The projection of the bits to the squares
is shown on the Figure 9. To simplify operations on this data type, it has been wrapped in the
class and useful operators have been overloaded:

Listing 1. Bitboard class declaration.
1 t y p e d e f unsigned i n t u i n t ;
2 c l a s s B i t b o a r d
3 {
4 p r i v a t e :
5 u i n t Data [3] ;
6 p u b l i c :
7 B i t b o a r d (u i n t Data0 = 0 , u i n t Data1 = 0 , u i n t Data2 = 0) ;

Using bitboards for move generation in chess for three 67

8 bool operator ==(c o n s t B i t b o a r d& n) c o n s t ;
9 bool operator ! = (c o n s t B i t b o a r d& n) c o n s t ;

10 operator u i n t () c o n s t ;
11 B i t b o a r d operator &(c o n s t B i t b o a r d& n) c o n s t ;
12 B i t b o a r d operator | (c o n s t B i t b o a r d& n) c o n s t ;
13 B i t b o a r d operator ∧ (c o n s t B i t b o a r d& n) c o n s t ;
14 B i t b o a r d operator ∼() c o n s t ;
15 i n t LS1B () c o n s t ;
16 bool I s B i t S e t (u i n t n) c o n s t ;
17 void S e t B i t (u i n t n) ;
18 void C l e a r B i t (u i n t n) ;
19 u i n t GetData (u i n t n) c o n s t ;
20 B i t b o a r d AdvanceWhitePawns () c o n s t ;
21 B i t b o a r d AdvanceBlackPawns () c o n s t ;
22 B i t b o a r d AdvanceRedPawns () c o n s t ;
23 B i t b o a r d Whi tePawnsAt tacks () c o n s t ;
24 B i t b o a r d BlackPawnsAt t acks () c o n s t ;
25 B i t b o a r d RedPawnsAt tacks () c o n s t ;
26 } ;

Below there is a source code of a few methods. Other methods are very similar, so they
are not listed here.

Listing 2. Source code of some methods.
1 B i t b o a r d : : operator u i n t () c o n s t
2 {
3 re turn (Data [0] | Data [1] | Data [2]) ;
4 }
5 B i t b o a r d B i t b o a r d : : operator &(c o n s t B i t b o a r d& n) c o n s t
6 {
7 re turn B i t b o a r d (Data [0] & n . Data [0] , Data [1] & n . Data [1] , Data [2] & n . Data [2]) ;
8 }
9 u i n t B i t b o a r d : : GetData (u i n t n) c o n s t

10 {
11 re turn (n < 96 ? Data [n >> 5] >> (n & 31) : 0) ;
12 }
13 void B i t b o a r d : : C l e a r B i t (u i n t n)
14 {
15 i f (n < 96)
16 Data [n >> 5] &= ∼(1 << (n & 31)) ;
17 }
18 B i t b o a r d B i t b o a r d : : AdvanceWhitePawns () c o n s t
19 {
20 u i n t n = (Data [0] >> 24) ;
21 n = ((n & 0x55) << 1) | ((n >> 1) & 0x55) ;
22 n = ((n & 0x33) << 2) | ((n >> 2) & 0x33) ;
23 n = ((n & 0 x0f) << 4) | ((n >> 4) & 0 x0f) ;
24 re turn B i t b o a r d (Data [0] << 8 ,
25 (Data [1] >> 8) | ((n & 0 xf0) << 24) ,
26 (Data [2] >> 8) | ((n & 0 x0f) << 24)) ;
27 }
28 B i t b o a r d B i t b o a r d : : Whi tePawnsAt tacks () c o n s t
29 {
30 re turn B i t b o a r d (((Data [0] & 0 x f e f e f e f e) << 7) | ((Data [0] & 0 x 7 f 7 f 7 f 7 f) << 9) ,
31 ((Data [1] & 0 x 7 f 7 f 7 f 7 f) >> 7) | ((Data [1] & 0 x f e f e f e f e) >> 9) ,
32 ((Data [2] & 0 x 7 f 7 f 7 f 7 f) >> 7) | ((Data [2] & 0 x f e f e f e f e) >> 9)) ;
33 }

Casting operator is helpful to check whether bitboard is empty (equal to 0) or not. GetData
method has almost the same behaviour as a right shift operator. AdvanceWhitePawns
method moves bits in the same way as white pawn steps forward. WhitePawnsAttacks
method is used to generate pawn’s captures. In the actual implementation, LS1B method
utilises assembly instruction bsf (Bit Scan Forward) to extract position of the least significant
1 bit. The same result may be obtained using de Bruijn sequences [8].

68 Jacek Klimaszewski

Listing 3. Source code of a LS1B method that uses de Bruijn sequences.
1 c o n s t unsigned i n t d e b r u i j n 3 2 = 0 x4653adf , i ndex32 [] = {0 , 1 , 2 , 6 , 3 , 11 , 7 , 16 , 4 , 14 , ↪→

←↩12 , 21 , 8 , 23 , 17 , 26 , 31 , 5 , 10 , 15 , 13 , 20 , 22 , 25 , 30 , 9 , 19 , 24 , 29 , 18 , 28 , 2 7 } ;
2 i n t B i t b o a r d : : LS1B () c o n s t
3 {
4 i f (Data [0] != 0) re turn i ndex32 [((Data [0] & −Data [0]) ∗ d e b r u i j n 3 2) >> 2 7] ;
5 i f (Data [1] != 0) re turn i ndex32 [((Data [1] & −Data [1]) ∗ d e b r u i j n 3 2) >> 27] + 3 2 ;
6 i f (Data [2] != 0) re turn i ndex32 [((Data [2] & −Data [2]) ∗ d e b r u i j n 3 2) >> 27] + 6 4 ;
7 re turn −1;
8 }

To store whole position, each bitboard for each piece’s type must be created, so 18 bit-
boards are needed. As can be noted, position of the king does not have to be put into the bit-
board, because each player always has one and only one king. To facilitate some operations, it
is better to keep those bitboards in the array (e.g. Bitboard Pawns[3], Knights[3]
and so on). Also creation of another bitboards (representing occupancy of all pieces and
occupancy of all pieces of each player) will save time in move generation process. All of
those auxiliary bitmaps must be updated every move.

At last, it is a good idea to use an array representation in conjunction with a bitboard
representation, because it will be easier to determine whether capture occurs and what piece
is captured (if any) [4].

3.1. Move generation of non-sliding pieces
For non-sliding pieces (i.e. pawn, knight and king) move generation is relatively easy. If

pawn stays on the “central edge” (4th rank for white, 5th for black, 9th for red), auxiliary
bitboards representing attacks from those squares (e.g. attacks of white pawn from Figure 2
are given by Bitboard(0x00000000u, 0x28000000u, 0x08000000u)) are used.

Figure 10. Bitboard representing attacks
of a knight from D4 square.

To generate knight’s possible moves (king is
handled similarly), precomputed array of 96 bit-
boards is used, where every bitboard contains
available moves from a given square. Figure 10 de-
picts bitboard representing available moves of the
knight from the D4 square. Below there is a part of
the knight’s move generation procedure.

1 copy = K n i g h t s [S ide] ;
2 whi le ((from = copy . LS1B ()) != −1)
3 {
4 copy . C l e a r B i t (from) ;
5 a t t a c k s = K n i g h t A t t a c k s [from] & ∼P i e c e s [S ide] ;
6 whi le ((t o = a t t a c k s . LS1B ()) != −1)
7 {
8 a t t a c k s . C l e a r B i t (t o) ;
9 add_move (from , t o) ;

10 }
11 }

3.2. Move generation of sliding pieces
Move generation of sliding pieces is handled in a different way, because sliding pieces

stop when they encounter a piece of any kind. For detecting possible moves in the rank (row),
two dimensional pre-calculated array of bitboards RankAttacks[96][256] is needed,
where the first index denotes square and the second index stands for occupancy of the rank
[9]. As Hyatt pointed out [10], outer squares do not change attack, so they may be discarded
— it reduces size of the array 4 times.

Using bitboards for move generation in chess for three 69

(a) Files. (b) Left diagonals. (c) Right diagonals.

Figure 11. Projection of files and diagonals.

The same idea can be used to generate possible moves in the file (column), but earlier files
have to be mapped, because squares in the file are not adjacent in the bitboard. This projection
is known as a rotation by 90 degree [10] and it is shown in the Figure 11.

Now it is possible to generate moves of a rook. Below there is a part of the source code,
which does this task. Actually, one dimensional array RankAttacks[96*64] was used.

1 copy = Rooks [S ide] ;
2 whi le ((from = copy . LS1B ()) != −1)
3 {
4 copy . C l e a r B i t (from) ;
5 a t t a c k s = RankAt tacks [(from << 6) | (Occupied . GetData (R a n k S h i f t [from]) & 0 x3f)] ;
6 a t t a c k s | = F i l e A t t a c k s [(from << 6) | (Occupied_R90 . GetData (F i l e S h i f t [from]) & 0 x3f)] ;
7 a t t a c k s &= ∼P i e c e s [S ide] ;
8 whi le ((t o = a t t a c k s . LS1B ()) != −1)
9 {

10 a t t a c k s . C l e a r B i t (t o) ;
11 add_move (from , t o) ;
12 }
13 }

Auxiliary arrays RankShift and FileShift are given below.

const int RankShift[96] =
{

1, 1, 1, 1, 1, 1, 1, 1,
9, 9, 9, 9, 9, 9, 9, 9,
17, 17, 17, 17, 17, 17, 17, 17,
25, 25, 25, 25, 25, 25, 25, 25,
33, 33, 33, 33, 33, 33, 33, 33,
41, 41, 41, 41, 41, 41, 41, 41,
49, 49, 49, 49, 49, 49, 49, 49,
57, 57, 57, 57, 57, 57, 57, 57,
65, 65, 65, 65, 65, 65, 65, 65,
73, 73, 73, 73, 73, 73, 73, 73,
81, 81, 81, 81, 81, 81, 81, 81,
89, 89, 89, 89, 89, 89, 89, 89

};

const int FileShift[96] =
{

65, 73, 81, 89, 25, 17, 9, 1,
65, 73, 81, 89, 25, 17, 9, 1,
65, 73, 81, 89, 25, 17, 9, 1,
65, 73, 81, 89, 25, 17, 9, 1,
33, 41, 49, 57, 89, 81, 73, 65,
33, 41, 49, 57, 89, 81, 73, 65,
33, 41, 49, 57, 89, 81, 73, 65,
33, 41, 49, 57, 89, 81, 73, 65,
1, 9, 17, 25, 57, 49, 41, 33,
1, 9, 17, 25, 57, 49, 41, 33,
1, 9, 17, 25, 57, 49, 41, 33,
1, 9, 17, 25, 57, 49, 41, 33

};

Move generation in diagonals is handled similarly. To save memory, main diagonals are
processed separately, so there are 4 arrays instead of 2: LeftDiagAttacks[96][32]
and LeftMainDiagAttacks[12][512] for the left diagonals and respectively there are
RightDiagAttacks[96][32] and RightMainDiagAttacks[12][512] for the
right diagonals. Moreover, diagonals do not have fixed size, hence 2 more arrays containing
masks are needed. Those auxiliary arrays are listed below.

70 Jacek Klimaszewski

const int R45_Shift[96] =
{

85, 50, 44, 39, 29, 36, 34, 33,
78, 85, 50, 44, 39, 29, 36, 34,
72, 78, 85, 50, 44, 39, 29, 36,
67, 72, 78, 85, 50, 44, 39, 29,
85, 78, 72, 67, 61, 58, 65, 57,
22, 85, 78, 72, 67, 61, 58, 65,
16, 22, 85, 78, 72, 67, 61, 58,
11, 16, 22, 85, 78, 72, 67, 61,
85, 22, 16, 11, 7, 4, 2, 1,
50, 85, 22, 16, 11, 7, 4, 2,
44, 50, 85, 22, 16, 11, 7, 4,
39, 44, 50, 85, 22, 16, 11, 7

};

const int R45_Mask[96] =
{
511, 31, 15, 7, 3, 1, 0, 0,
31, 511, 31, 15, 7, 3, 1, 0,
15, 31, 511, 31, 15, 7, 3, 1,
7, 15, 31, 511, 31, 15, 7, 3,

511, 31, 15, 7, 3, 1, 0, 0,
31, 511, 31, 15, 7, 3, 1, 0,
15, 31, 511, 31, 15, 7, 3, 1,
7, 15, 31, 511, 31, 15, 7, 3,

511, 31, 15, 7, 3, 1, 0, 0,
31, 511, 31, 15, 7, 3, 1, 0,
15, 31, 511, 31, 15, 7, 3, 1,
7, 15, 31, 511, 31, 15, 7, 3

};

const int L45_Shift[96] =
{

57, 65, 58, 61, 67, 72, 78, 85,
65, 58, 61, 67, 72, 78, 85, 50,
58, 61, 67, 72, 78, 85, 50, 44,
61, 67, 72, 78, 85, 50, 44, 39,
1, 2, 4, 7, 11, 16, 22, 85,
2, 4, 7, 11, 16, 22, 85, 78,
4, 7, 11, 16, 22, 85, 78, 72,
7, 11, 16, 22, 85, 78, 72, 67,

33, 34, 36, 29, 39, 44, 50, 85,
34, 36, 29, 39, 44, 50, 85, 22,
36, 29, 39, 44, 50, 85, 22, 16,
29, 39, 44, 50, 85, 22, 16, 11

};

const int L45_Mask[96] =
{
0, 0, 1, 3, 7, 15, 31, 511,
0, 1, 3, 7, 15, 31, 511, 31,
1, 3, 7, 15, 31, 511, 31, 15,
3, 7, 15, 31, 511, 31, 15, 7,
0, 0, 1, 3, 7, 15, 31, 511,
0, 1, 3, 7, 15, 31, 511, 31,
1, 3, 7, 15, 31, 511, 31, 15,
3, 7, 15, 31, 511, 31, 15, 7,
0, 0, 1, 3, 7, 15, 31, 511,
0, 1, 3, 7, 15, 31, 511, 31,
1, 3, 7, 15, 31, 511, 31, 15,
3, 7, 15, 31, 511, 31, 15, 7

};

Now it is possible to generate moves of a bishop. Below there is a source code, which does
this job. As mentioned earlier, one dimensional arrays of precomputed bitmaps were used.

1 copy = Bishops [S ide] ;
2 whi le ((from = copy . LS1B ()) != −1)
3 {
4 copy . C l e a r B i t (from) ;
5 i f (Mask [from] & RightMainDiagMask)
6 a t t a c k s = R i g h t M a i n D i a g A t t a c k s [((Ro t45Righ t [from] − R 4 5 _ S h i f t [from] + 1) << 9) | ↪→

←↩ (Occupied_R45 . GetData (R 4 5 _ S h i f t [from]) & R45_Mask [from])] ;
7 e l s e
8 a t t a c k s = R i g h t D i a g A t t a c k s [(from << 5) | (Occupied_R45 . GetData (R 4 5 _ S h i f t [from]) & ↪→

←↩R45_Mask [from])] ;
9 i f (Mask [from] & LeftMainDiagMask)

10 a t t a c k s | = L e f t M a i n D i a g A t t a c k s [((R o t 4 5 L e f t [from] − L 4 5 _ S h i f t [from] + 1) << 9) | ↪→
←↩ (Occupied_L45 . GetData (L 4 5 _ S h i f t [from]) & L45_Mask [from])] ;

11 e l s e
12 a t t a c k s | = L e f t D i a g A t t a c k s [(from << 5) | (Occupied_L45 . GetData (L 4 5 _ S h i f t [from]) & ↪→

←↩L45_Mask [from])] ;
13 a t t a c k s &= ∼P i e c e s [S ide] ;
14 whi le ((t o = a t t a c k s . LS1B ()) != −1)
15 {
16 a t t a c k s . C l e a r B i t (t o) ;
17 add_move (from , t o) ;
18 }
19 }

Arrays Rot45Left and Rot45Right represent projections of the diagonals, which are given
on the Figure 11.

4. Experimental results
Board representation and move generator were written in C++ and built using g++ 4.8.2

with parameter -O2 in Ubuntu 14.04 x64 OS running on the Samsung NP-RC520-S06PL
notebook. Then program was traversing the same game tree 10 times using depth-first search
algorithm with depth limited to 6 levels and it was counting visited nodes. Starting from the

Using bitboards for move generation in chess for three 71

initial position, the average time was 22.9348 seconds to visit all 87,828,597 nodes, which
gives average speed of ≈ 3,829,490 nodes per second. When using de Bruijn sequences to
index LS1B instead of inline assembly, the average time was ≈ 23.276 seconds, which gives
average speed of ≈ 3,773,354 nodes per second.

Both results are promising. Surprisingly the difference is relatively small. It should
be noted that eventual speed will be lower because of calls to evaluation function in the
tree-search procedure.

5. Conclusions and future research
In this paper it was explained how bitboards can be used in the move generation procedure.

It opens new doors for writing a computer program that could play this chess variant, because
board representation is one of the three components of a chess program — the other two are
tree-search procedure and evaluation function.

Probably the most challenging part of writing a computer chess program will be tree-search
procedure. In the literature there are a few algorithms (e.g. maxn [11] with some modifica-
tions, best-reply search [12], paranoid search [13]), but maybe some other approach should
be used.

References
[1] Pritchard, D.: Popular Chess Variants. Batsford Chess Books. B.T. Batsford, 2000. ISBN

9780713485783.
[2] Marinelli, F.: Triple chess. A.J. Valpy, 1826.
[3] Trząski, W.: Chess for three (in Polish). Wydawnictwo Profesjonalnej Szkoły Biznesu, 2001.

ISBN 8372300526.
[4] Hyatt, R.: Chess program board representations. https://cis.uab.edu/hyatt/boardrep.html. Ac-

cessed: 2015-06-15.
[5] Adelson-Velskii, G., Arlazarov, V., Bitman, A., Zhivotovskii, A., Uskov, A.: Programming a

computer to play chess. Russian Mathematical Surveys, 25, pp. 221–262, 1970.
[6] Frey, P.: Chess Skill in Man and Machine. Springer New York, 2012. ISBN 9781461255154.
[7] Grimbergen, R.: Using Bitboards for Move Generation in Shogi. ICGA Journal, 30(1), pp.

25–34, 2007.
[8] Leiserson, C., Prokop, H., Randall, K.: Using de Bruijn Sequences to Index a 1 in a Computer

Word, 1998.
[9] Heinz, E.: How DarkThought Plays Chess. ICCA Journal, 20(3), pp. 166–176, 1997.

[10] Hyatt, R.: Rotated bitmaps, a new twist on an old idea. ICCA Journal, 22(4), pp. 213–222, 1999.
[11] Luckhartd, C., Irani, K.: An Algorithmic Solution of N-Person Games. In: AAAI’86, pp.

158–162. 1986.
[12] Schadd, M., Winands, M.: Best-Reply Search for Multiplayer Games. IEEE Transactions on

Computational Intelligence and AI in Games, 3(1), pp. 57–66, 2011.
[13] Sturtevant, N., Korf, R.: On Pruning Techniques for Multi-Player Games. In: AAAI/IAAI’00,

pp. 201–207. 2000.

