123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- /*
- AngelCode Scripting Library
- Copyright (c) 2003-2015 Andreas Jonsson
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any
- damages arising from the use of this software.
- Permission is granted to anyone to use this software for any
- purpose, including commercial applications, and to alter it and
- redistribute it freely, subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you
- must not claim that you wrote the original software. If you use
- this software in a product, an acknowledgment in the product
- documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and
- must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source
- distribution.
- The original version of this library can be located at:
- http://www.angelcode.com/angelscript/
- Andreas Jonsson
- andreas@angelcode.com
- */
- //
- // as_callfunc_ppc.cpp
- //
- // These functions handle the actual calling of system functions
- //
- // This version is PPC specific
- //
- #include <stdio.h>
- #include "as_config.h"
- #ifndef AS_MAX_PORTABILITY
- #ifdef AS_PPC
- #include "as_callfunc.h"
- #include "as_scriptengine.h"
- #include "as_texts.h"
- #include "as_tokendef.h"
- #include "as_context.h"
- #include <stdlib.h>
- BEGIN_AS_NAMESPACE
- // This part was originally written by Pecan Heber, June 2006, for
- // use on MacOS X with 32bit PPC processor. He based the code on the
- // code in as_callfunc_sh4.cpp
- #define AS_PPC_MAX_ARGS 32
- // The array used to send values to the correct places.
- // Contains a byte of argTypes to indicate the register tYpe to load
- // or zero if end of arguments
- // The +1 is for when CallThis (object methods) is used
- // Extra +1 when returning in memory
- // Extra +1 in ppcArgsType to ensure zero end-of-args marker
- // TODO: multithread: We need to remove these global variables for thread-safety
- enum argTypes { ppcENDARG, ppcINTARG, ppcFLOATARG, ppcDOUBLEARG };
- static asDWORD ppcArgs[2*AS_PPC_MAX_ARGS + 1 + 1];
- // Using extern "C" because we use this symbol name in the assembly code
- extern "C"
- {
- static asBYTE ppcArgsType[2*AS_PPC_MAX_ARGS + 1 + 1 + 1];
- }
- // NOTE: these values are for PowerPC 32 bit.
- #define PPC_LINKAGE_SIZE (24) // how big the PPC linkage area is in a stack frame
- #define PPC_NUM_REGSTORE (9) // how many registers of the PPC we need to store/restore for ppcFunc()
- #define PPC_REGSTORE_SIZE (4*PPC_NUM_REGSTORE) // how many bytes are required for register store/restore
- #define EXTRA_STACK_SIZE (PPC_LINKAGE_SIZE + PPC_REGSTORE_SIZE) // memory required, not including parameters, for the stack frame
- #define PPC_STACK_SIZE(numParams) (-( ( ((((numParams)<8)?8:(numParams))<<2) + EXTRA_STACK_SIZE + 15 ) & ~15 )) // calculates the total stack size needed for ppcFunc64, must pad to 16bytes
- // Loads all data into the correct places and calls the function.
- // ppcArgsType is an array containing a byte type (enum argTypes) for each argument.
- // stackArgSize is the size in bytes for how much data to put on the stack frame
- extern "C" asQWORD ppcFunc(const asDWORD* argsPtr, int StackArgSize, asDWORD func);
- asm(" .text\n"
- " .align 2\n" // align the code to 1 << 2 = 4 bytes
- " .globl _ppcFunc\n"
- "_ppcFunc:\n"
- // We're receiving the following parameters
-
- // r3 : argsPtr
- // r4 : StackArgSize
- // r5 : func
- // The following registers are used through out the function
-
- // r31 : the address of the label address, as reference for all other labels
- // r30 : temporary variable
- // r29 : arg list pointer
- // r28 : number of FPR registers used by the parameters
- // r27 : the function pointer that will be called
- // r26 : the location of the parameters for the call
- // r25 : arg type list pointer
- // r24 : temporary variable
- // r23 : number of GPR registers used by the parameters
- // r1 : this is stack pointer
- // r0 : temporary variable
- // f0 : temporary variable
- // We need to store some of the registers for restoral before returning to caller
-
- // lr - always stored in 8(r1) - this is the return address
- // cr - not required to be stored, but if it is, its place is in 4(r1) - this is the condition register
- // r1 - always stored in 0(r1) - this is the stack pointer
- // r11
- // r13 to r31
- // f14 to f31
- // Store register values and setup our stack frame
- " mflr r0 \n" // move the return address into r0
- " stw r0, 8(r1) \n" // Store the return address on the stack
- " stmw r23, -36(r1) \n" // Store registers r23 to r31 on the stack
- " stwux r1, r1, r4 \n" // Increase the stack with the needed space and store the original value in the destination
-
- // Obtain an address that we'll use as our position of reference when obtaining addresses of other labels
- " bl address \n"
- "address: \n"
- " mflr r31 \n"
- // initial registers for the function
- " mr r29, r3 \n" // (r29) args list
- " mr r27, r5 \n" // load the function pointer to call. func actually holds the pointer to our function
- " addi r26, r1, 24 \n" // setup the pointer to the parameter area to the function we're going to call
- " sub r0, r0, r0 \n" // zero out r0
- " mr r23, r0 \n" // zero out r23, which holds the number of used GPR registers
- " mr r28, r0 \n" // zero our r22, which holds the number of used float registers
-
- // load the global ppcArgsType which holds the types of arguments for each argument
- " addis r25, r31, ha16(_ppcArgsType - address) \n" // load the upper 16 bits of the address to r25
- " la r25, lo16(_ppcArgsType - address)(r25) \n" // load the lower 16 bits of the address to r25
- " subi r25, r25, 1 \n" // since we increment r25 on its use, we'll pre-decrement it
- // loop through the arguments
- "ppcNextArg: \n"
- " addi r25, r25, 1 \n" // increment r25, our arg type pointer
- // switch based on the current argument type (0:end, 1:int, 2:float 3:double)
- " lbz r24, 0(r25) \n" // load the current argument type (it's a byte)
- " mulli r24, r24, 4 \n" // our jump table has 4 bytes per case (1 instruction)
- " addis r30, r31, ha16(ppcTypeSwitch - address) \n" // load the address of the jump table for the switch
- " la r30, lo16(ppcTypeSwitch - address)(r30) \n"
-
- " add r0, r30, r24 \n" // offset by our argument type
- " mtctr r0 \n" // load the jump address into CTR
- " bctr \n" // jump into the jump table/switch
- " nop \n"
-
- // the jump table/switch based on the current argument type
- "ppcTypeSwitch: \n"
- " b ppcArgsEnd \n"
- " b ppcArgIsInteger \n"
- " b ppcArgIsFloat \n"
- " b ppcArgIsDouble \n"
-
- // when we get here we have finished processing all the arguments
- // everything is ready to go to call the function
- "ppcArgsEnd: \n"
- " mtctr r27 \n" // the function pointer is stored in r27, load that into CTR
- " bctrl \n" // call the function. We have to do it this way so that the LR gets the proper
- " nop \n" // return value (the next instruction below). So we have to branch from CTR instead of LR.
-
- // Restore registers and caller's stack frame, then return to caller
- " lwz r1, 0(r1) \n" // restore the caller's stack pointer
- " lwz r0, 8(r1) \n" // load in the caller's LR
- " mtlr r0 \n" // restore the caller's LR
- " lmw r23, -36(r1) \n" // restore registers r23 to r31 from the stack
- " blr \n" // return back to the caller
- " nop \n"
-
- // Integer argument (GPR register)
- "ppcArgIsInteger: \n"
- " addis r30, r31, ha16(ppcLoadIntReg - address) \n" // load the address to the jump table for integer registers
- " la r30, lo16(ppcLoadIntReg - address)(r30) \n"
- " mulli r0, r23, 8 \n" // each item in the jump table is 2 instructions (8 bytes)
- " add r0, r0, r30 \n" // calculate ppcLoadIntReg[numUsedGPRRegs]
- " lwz r30, 0(r29) \n" // load the next argument from the argument list into r30
- " cmpwi r23, 8 \n" // we can only load GPR3 through GPR10 (8 registers)
- " bgt ppcLoadIntRegUpd \n" // if we're beyond 8 GPR registers, we're in the stack, go there
- " mtctr r0 \n" // load the address of our ppcLoadIntReg jump table (we're below 8 GPR registers)
- " bctr \n" // load the argument into a GPR register
- " nop \n"
- // jump table for GPR registers, for the first 8 GPR arguments
- "ppcLoadIntReg: \n"
- " mr r3, r30 \n" // arg0 (to r3)
- " b ppcLoadIntRegUpd \n"
- " mr r4, r30 \n" // arg1 (to r4)
- " b ppcLoadIntRegUpd \n"
- " mr r5, r30 \n" // arg2 (to r5)
- " b ppcLoadIntRegUpd \n"
- " mr r6, r30 \n" // arg3 (to r6)
- " b ppcLoadIntRegUpd \n"
- " mr r7, r30 \n" // arg4 (to r7)
- " b ppcLoadIntRegUpd \n"
- " mr r8, r30 \n" // arg5 (to r8)
- " b ppcLoadIntRegUpd \n"
- " mr r9, r30 \n" // arg6 (to r9)
- " b ppcLoadIntRegUpd \n"
- " mr r10, r30 \n" // arg7 (to r10)
- " b ppcLoadIntRegUpd \n"
- // all GPR arguments still go on the stack
- "ppcLoadIntRegUpd: \n"
- " stw r30, 0(r26) \n" // store the argument into the next slot on the stack's argument list
- " addi r23, r23, 1 \n" // count a used GPR register
- " addi r29, r29, 4 \n" // move to the next argument on the list
- " addi r26, r26, 4 \n" // adjust our argument stack pointer for the next
- " b ppcNextArg \n" // next argument
- // single Float argument
- "ppcArgIsFloat:\n"
- " addis r30, r31, ha16(ppcLoadFloatReg - address) \n" // get the base address of the float register jump table
- " la r30, lo16(ppcLoadFloatReg - address)(r30) \n"
- " mulli r0, r28, 8 \n" // each jump table entry is 8 bytes
- " add r0, r0, r30 \n" // calculate the offset to ppcLoadFloatReg[numUsedFloatReg]
- " lfs f0, 0(r29) \n" // load the next argument as a float into f0
- " cmpwi r28, 13 \n" // can't load more than 13 float/double registers
- " bgt ppcLoadFloatRegUpd \n" // if we're beyond 13 registers, just fall to inserting into the stack
- " mtctr r0 \n" // jump into the float jump table
- " bctr \n"
- " nop \n"
- // jump table for float registers, for the first 13 float arguments
- "ppcLoadFloatReg: \n"
- " fmr f1, f0 \n" // arg0 (f1)
- " b ppcLoadFloatRegUpd \n"
- " fmr f2, f0 \n" // arg1 (f2)
- " b ppcLoadFloatRegUpd \n"
- " fmr f3, f0 \n" // arg2 (f3)
- " b ppcLoadFloatRegUpd \n"
- " fmr f4, f0 \n" // arg3 (f4)
- " b ppcLoadFloatRegUpd \n"
- " fmr f5, f0 \n" // arg4 (f5)
- " b ppcLoadFloatRegUpd \n"
- " fmr f6, f0 \n" // arg5 (f6)
- " b ppcLoadFloatRegUpd \n"
- " fmr f7, f0 \n" // arg6 (f7)
- " b ppcLoadFloatRegUpd \n"
- " fmr f8, f0 \n" // arg7 (f8)
- " b ppcLoadFloatRegUpd \n"
- " fmr f9, f0 \n" // arg8 (f9)
- " b ppcLoadFloatRegUpd \n"
- " fmr f10, f0 \n" // arg9 (f10)
- " b ppcLoadFloatRegUpd \n"
- " fmr f11, f0 \n" // arg10 (f11)
- " b ppcLoadFloatRegUpd \n"
- " fmr f12, f0 \n" // arg11 (f12)
- " b ppcLoadFloatRegUpd \n"
- " fmr f13, f0 \n" // arg12 (f13)
- " b ppcLoadFloatRegUpd \n"
- " nop \n"
- // all float arguments still go on the stack
- "ppcLoadFloatRegUpd: \n"
- " stfs f0, 0(r26) \n" // store, as a single float, f0 (current argument) on to the stack argument list
- " addi r23, r23, 1 \n" // a float register eats up a GPR register
- " addi r28, r28, 1 \n" // ...and, of course, a float register
- " addi r29, r29, 4 \n" // move to the next argument in the list
- " addi r26, r26, 4 \n" // move to the next stack slot
- " b ppcNextArg \n" // on to the next argument
- " nop \n"
-
- // double Float argument
- "ppcArgIsDouble: \n"
- " addis r30, r31, ha16(ppcLoadDoubleReg - address) \n" // load the base address of the jump table for double registers
- " la r30, lo16(ppcLoadDoubleReg - address)(r30) \n"
- " mulli r0, r28, 8 \n" // each slot of the jump table is 8 bytes
- " add r0, r0, r30 \n" // calculate ppcLoadDoubleReg[numUsedFloatReg]
- " lfd f0, 0(r29) \n" // load the next argument, as a double float, into f0
- " cmpwi r28, 13 \n" // the first 13 floats must go into float registers also
- " bgt ppcLoadDoubleRegUpd \n" // if we're beyond 13, then just put on to the stack
- " mtctr r0 \n" // we're under 13, first load our register
- " bctr \n" // jump into the jump table
- " nop \n"
- // jump table for float registers, for the first 13 float arguments
- "ppcLoadDoubleReg: \n"
- " fmr f1, f0 \n" // arg0 (f1)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f2, f0 \n" // arg1 (f2)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f3, f0 \n" // arg2 (f3)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f4, f0 \n" // arg3 (f4)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f5, f0 \n" // arg4 (f5)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f6, f0 \n" // arg5 (f6)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f7, f0 \n" // arg6 (f7)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f8, f0 \n" // arg7 (f8)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f9, f0 \n" // arg8 (f9)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f10, f0 \n" // arg9 (f10)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f11, f0 \n" // arg10 (f11)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f12, f0 \n" // arg11 (f12)
- " b ppcLoadDoubleRegUpd \n"
- " fmr f13, f0 \n" // arg12 (f13)
- " b ppcLoadDoubleRegUpd \n"
- " nop \n"
- // all float arguments still go on the stack
- "ppcLoadDoubleRegUpd: \n"
- " stfd f0, 0(r26) \n" // store f0, as a double, into the argument list on the stack
- " addi r23, r23, 2 \n" // a double float eats up two GPRs
- " addi r28, r28, 1 \n" // ...and, of course, a float
- " addi r29, r29, 8 \n" // increment to our next argument we need to process (8 bytes for the 64bit float)
- " addi r26, r26, 8 \n" // increment to the next slot on the argument list on the stack (8 bytes)
- " b ppcNextArg \n" // on to the next argument
- " nop \n"
- );
- asDWORD GetReturnedFloat()
- {
- asDWORD f;
- asm(" stfs f1, %0\n" : "=m"(f));
- return f;
- }
- asQWORD GetReturnedDouble()
- {
- asQWORD f;
- asm(" stfd f1, %0\n" : "=m"(f));
- return f;
- }
- // puts the arguments in the correct place in the stack array. See comments above.
- void stackArgs(const asDWORD *args, const asBYTE *argsType, int& numIntArgs, int& numFloatArgs, int& numDoubleArgs)
- {
- int i;
- int argWordPos = numIntArgs + numFloatArgs + (numDoubleArgs*2);
- int typeOffset = numIntArgs + numFloatArgs + numDoubleArgs;
- int typeIndex;
- for( i = 0, typeIndex = 0; ; i++, typeIndex++ )
- {
- // store the type
- ppcArgsType[typeOffset++] = argsType[typeIndex];
- if( argsType[typeIndex] == ppcENDARG )
- break;
- switch( argsType[typeIndex] )
- {
- case ppcFLOATARG:
- // stow float
- ppcArgs[argWordPos] = args[i]; // it's just a bit copy
- numFloatArgs++;
- argWordPos++; //add one word
- break;
- case ppcDOUBLEARG:
- // stow double
- memcpy( &ppcArgs[argWordPos], &args[i], sizeof(double) ); // we have to do this because of alignment
- numDoubleArgs++;
- argWordPos+=2; //add two words
- i++;//doubles take up 2 argument slots
- break;
- case ppcINTARG:
- // stow register
- ppcArgs[argWordPos] = args[i];
- numIntArgs++;
- argWordPos++;
- break;
- }
- }
- // close off the argument list (if we have max args we won't close it off until here)
- ppcArgsType[typeOffset] = ppcENDARG;
- }
- static asQWORD CallCDeclFunction(const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
- {
- int baseArgCount = 0;
- if( retInMemory )
- {
- // the first argument is the 'return in memory' pointer
- ppcArgs[0] = (asDWORD)retInMemory;
- ppcArgsType[0] = ppcINTARG;
- ppcArgsType[1] = ppcENDARG;
- baseArgCount = 1;
- }
- // put the arguments in the correct places in the ppcArgs array
- int numTotalArgs = baseArgCount;
- if( argSize > 0 )
- {
- int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0;
- stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs );
- numTotalArgs = intArgs + floatArgs + 2*doubleArgs; // doubles occupy two slots
- }
- else
- {
- // no arguments, cap the type list
- ppcArgsType[baseArgCount] = ppcENDARG;
- }
- // call the function with the arguments
- return ppcFunc( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
- }
- // This function is identical to CallCDeclFunction, with the only difference that
- // the value in the first parameter is the object (unless we are returning in memory)
- static asQWORD CallThisCallFunction(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory )
- {
- int baseArgCount = 0;
- if( retInMemory )
- {
- // the first argument is the 'return in memory' pointer
- ppcArgs[0] = (asDWORD)retInMemory;
- ppcArgsType[0] = ppcINTARG;
- ppcArgsType[1] = ppcENDARG;
- baseArgCount = 1;
- }
- // the first argument is the 'this' of the object
- ppcArgs[baseArgCount] = (asDWORD)obj;
- ppcArgsType[baseArgCount++] = ppcINTARG;
- ppcArgsType[baseArgCount] = ppcENDARG;
- // put the arguments in the correct places in the ppcArgs array
- int numTotalArgs = baseArgCount;
- if( argSize > 0 )
- {
- int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0;
- stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs );
- numTotalArgs = intArgs + floatArgs + 2*doubleArgs; // doubles occupy two slots
- }
- // call the function with the arguments
- return ppcFunc( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func);
- }
- // This function is identical to CallCDeclFunction, with the only difference that
- // the value in the last parameter is the object
- // NOTE: on PPC the order for the args is reversed
- static asQWORD CallThisCallFunction_objLast(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
- {
- UNUSED_VAR(argSize);
- int baseArgCount = 0;
- if( retInMemory )
- {
- // the first argument is the 'return in memory' pointer
- ppcArgs[0] = (asDWORD)retInMemory;
- ppcArgsType[0] = ppcINTARG;
- ppcArgsType[1] = ppcENDARG;
- baseArgCount = 1;
- }
- // stack any of the arguments
- int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0;
- stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs );
- int numTotalArgs = intArgs + floatArgs + doubleArgs;
- // can we fit the object in at the end?
- if( numTotalArgs < AS_PPC_MAX_ARGS )
- {
- // put the object pointer at the end
- int argPos = intArgs + floatArgs + (doubleArgs * 2);
- ppcArgs[argPos] = (asDWORD)obj;
- ppcArgsType[numTotalArgs++] = ppcINTARG;
- ppcArgsType[numTotalArgs] = ppcENDARG;
- }
- // call the function with the arguments
- return ppcFunc( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
- }
- asQWORD CallSystemFunctionNative(asCContext *context, asCScriptFunction *descr, void *obj, asDWORD *args, void *retPointer, asQWORD &/*retQW2*/, void */*secondObject*/)
- {
- // TODO: PPC does not yet support THISCALL_OBJFIRST/LAST
- // use a working array of types, we'll configure the final one in stackArgs
- asBYTE argsType[2*AS_PPC_MAX_ARGS + 1 + 1 + 1];
- memset( argsType, 0, sizeof(argsType));
- asCScriptEngine *engine = context->m_engine;
- asSSystemFunctionInterface *sysFunc = descr->sysFuncIntf;
- asQWORD retQW = 0;
- void *func = (void*)sysFunc->func;
- int paramSize = sysFunc->paramSize;
- asDWORD *vftable = NULL;
- int a, s;
- // convert the parameters that are < 4 bytes from little endian to big endian
- int argDwordOffset = 0;
- for( a = 0; a < (int)descr->parameterTypes.GetLength(); a++ )
- {
- int numBytes = descr->parameterTypes[a].GetSizeInMemoryBytes();
- if( numBytes >= 4 || descr->parameterTypes[a].IsReference() || descr->parameterTypes[a].IsObjectHandle() )
- {
- argDwordOffset += descr->parameterTypes[a].GetSizeOnStackDWords();
- continue;
- }
- // flip
- asASSERT( numBytes == 1 || numBytes == 2 );
- switch( numBytes )
- {
- case 1:
- {
- volatile asBYTE *bPtr = (asBYTE*)ARG_DW(args[argDwordOffset]);
- asBYTE t = bPtr[0];
- bPtr[0] = bPtr[3];
- bPtr[3] = t;
- t = bPtr[1];
- bPtr[1] = bPtr[2];
- bPtr[2] = t;
- }
- break;
- case 2:
- {
- volatile asWORD *wPtr = (asWORD*)ARG_DW(args[argDwordOffset]);
- asWORD t = wPtr[0];
- wPtr[0] = wPtr[1];
- wPtr[1] = t;
- }
- break;
- }
- argDwordOffset++;
- }
- // mark all float/double/int arguments
- if( !sysFunc->takesObjByVal )
- {
- for( s = 0, a = 0; s < (int)descr->parameterTypes.GetLength(); s++, a++ )
- {
- if( descr->parameterTypes[s].IsFloatType() && !descr->parameterTypes[s].IsReference() )
- {
- argsType[a] = ppcFLOATARG;
- }
- else if( descr->parameterTypes[s].IsDoubleType() && !descr->parameterTypes[s].IsReference() )
- {
- argsType[a] = ppcDOUBLEARG;
- }
- else
- {
- argsType[a] = ppcINTARG;
- if( descr->parameterTypes[s].GetSizeOnStackDWords() == 2 )
- {
- // Add an extra integer argument for the extra size
- a++;
- argsType[a] = ppcINTARG;
- }
- }
- }
- }
- asDWORD paramBuffer[64];
- if( sysFunc->takesObjByVal )
- {
- paramSize = 0;
- int spos = 0;
- int dpos = 1;
- int a = 0;
- for( asUINT n = 0; n < descr->parameterTypes.GetLength(); n++ )
- {
- if( descr->parameterTypes[n].IsObject() && !descr->parameterTypes[n].IsObjectHandle() && !descr->parameterTypes[n].IsReference() )
- {
- #ifdef COMPLEX_OBJS_PASSED_BY_REF
- if( descr->parameterTypes[n].GetTypeInfo()->flags & COMPLEX_MASK )
- {
- argsType[a++] = ppcINTARG;
- paramBuffer[dpos++] = args[spos++];
- paramSize++;
- }
- else
- #endif
- {
- // TODO: Probably have to handle asOBJ_APP_FLOAT as a primitive
- // Copy the object's memory to the buffer
- memcpy( ¶mBuffer[dpos], *(void**)(args+spos), descr->parameterTypes[n].GetSizeInMemoryBytes() );
- // Delete the original memory
- engine->CallFree(*(char**)(args+spos) );
- spos++;
- asUINT dwords = descr->parameterTypes[n].GetSizeInMemoryDWords();
- dpos += dwords;
- paramSize += dwords;
- for( asUINT i = 0; i < dwords; i++ )
- argsType[a++] = ppcINTARG;
- }
- }
- else
- {
- // Copy the value directly
- paramBuffer[dpos++] = args[spos++];
- if( descr->parameterTypes[n].IsFloatType() && !descr->parameterTypes[n].IsReference() )
- argsType[a++] = ppcFLOATARG;
- else if( descr->parameterTypes[n].IsDoubleType() && !descr->parameterTypes[n].IsReference() )
- argsType[a++] = ppcDOUBLEARG;
- else
- argsType[a++] = ppcINTARG;
- if( descr->parameterTypes[n].GetSizeOnStackDWords() > 1 )
- {
- paramBuffer[dpos++] = args[spos++];
- if( !descr->parameterTypes[n].IsDoubleType() ) // Double already knows it is 2 dwords
- argsType[a++] = ppcINTARG;
- }
- paramSize += descr->parameterTypes[n].GetSizeOnStackDWords();
- }
- }
- // Keep a free location at the beginning
- args = ¶mBuffer[1];
- }
-
- int callConv = sysFunc->callConv;
- switch( callConv )
- {
- case ICC_CDECL:
- case ICC_CDECL_RETURNINMEM:
- case ICC_STDCALL:
- case ICC_STDCALL_RETURNINMEM:
- retQW = CallCDeclFunction( args, argsType, paramSize, (asDWORD)func, retPointer );
- break;
- case ICC_THISCALL:
- case ICC_THISCALL_RETURNINMEM:
- retQW = CallThisCallFunction(obj, args, argsType, paramSize, (asDWORD)func, retPointer );
- break;
- case ICC_VIRTUAL_THISCALL:
- case ICC_VIRTUAL_THISCALL_RETURNINMEM:
- // Get virtual function table from the object pointer
- vftable = *(asDWORD**)obj;
- retQW = CallThisCallFunction( obj, args, argsType, paramSize, vftable[asDWORD(func)>>2], retPointer );
- break;
- case ICC_CDECL_OBJLAST:
- case ICC_CDECL_OBJLAST_RETURNINMEM:
- retQW = CallThisCallFunction_objLast( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
- break;
- case ICC_CDECL_OBJFIRST:
- case ICC_CDECL_OBJFIRST_RETURNINMEM:
- retQW = CallThisCallFunction( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
- break;
- default:
- context->SetInternalException(TXT_INVALID_CALLING_CONVENTION);
- }
- // If the return is a float value we need to get the value from the FP register
- if( sysFunc->hostReturnFloat )
- {
- if( sysFunc->hostReturnSize == 1 )
- *(asDWORD*)&retQW = GetReturnedFloat();
- else
- retQW = GetReturnedDouble();
- }
- return retQW;
- }
- END_AS_NAMESPACE
- #endif // AS_PPC
- #endif // AS_MAX_PORTABILITY
|