sar.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2019-2020 Realtek Corporation
  3. */
  4. #include <linux/version.h>
  5. #include "acpi.h"
  6. #include "debug.h"
  7. #include "phy.h"
  8. #include "reg.h"
  9. #if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0)
  10. #include "sar.h"
  11. #define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
  12. #define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
  13. #define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
  14. static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
  15. u32 center_freq)
  16. {
  17. switch (center_freq) {
  18. default:
  19. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  20. "center freq: %u to SAR subband is unhandled\n",
  21. center_freq);
  22. fallthrough;
  23. case 2412 ... 2484:
  24. return RTW89_SAR_2GHZ_SUBBAND;
  25. case 5180 ... 5320:
  26. return RTW89_SAR_5GHZ_SUBBAND_1_2;
  27. case 5500 ... 5720:
  28. return RTW89_SAR_5GHZ_SUBBAND_2_E;
  29. case 5745 ... 5825:
  30. return RTW89_SAR_5GHZ_SUBBAND_3;
  31. case 5955 ... 6155:
  32. return RTW89_SAR_6GHZ_SUBBAND_5_L;
  33. case 6175 ... 6415:
  34. return RTW89_SAR_6GHZ_SUBBAND_5_H;
  35. case 6435 ... 6515:
  36. return RTW89_SAR_6GHZ_SUBBAND_6;
  37. case 6535 ... 6695:
  38. return RTW89_SAR_6GHZ_SUBBAND_7_L;
  39. case 6715 ... 6855:
  40. return RTW89_SAR_6GHZ_SUBBAND_7_H;
  41. /* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
  42. * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
  43. * struct rtw89_sar_span in the following.
  44. */
  45. case 6895 ... 7115:
  46. return RTW89_SAR_6GHZ_SUBBAND_8;
  47. }
  48. }
  49. struct rtw89_sar_span {
  50. enum rtw89_sar_subband subband_low;
  51. enum rtw89_sar_subband subband_high;
  52. };
  53. #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
  54. #define RTW89_SAR_6GHZ_SPAN_HEAD 6145
  55. #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
  56. ((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
  57. #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
  58. [RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
  59. .subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
  60. .subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
  61. }
  62. /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
  63. * subbands. In the following, we describe each of them with rtw89_sar_span.
  64. */
  65. static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
  66. RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
  67. RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
  68. RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
  69. RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
  70. RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
  71. RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
  72. RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
  73. RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
  74. RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
  75. RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
  76. RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
  77. RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
  78. };
  79. static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
  80. u32 center_freq, s32 *cfg)
  81. {
  82. struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
  83. const struct rtw89_sar_span *span = NULL;
  84. enum rtw89_sar_subband subband_l, subband_h;
  85. int idx;
  86. if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
  87. idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
  88. /* To decrease size of rtw89_sar_overlapping_6ghz[],
  89. * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
  90. * to make first span as index 0 of the table. So, if center
  91. * frequency is less than the first one, it will get netative.
  92. */
  93. if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
  94. span = &rtw89_sar_overlapping_6ghz[idx];
  95. }
  96. if (span && RTW89_SAR_SPAN_VALID(span)) {
  97. subband_l = span->subband_low;
  98. subband_h = span->subband_high;
  99. } else {
  100. subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
  101. subband_h = subband_l;
  102. }
  103. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  104. "center_freq %u: SAR subband {%u, %u}\n",
  105. center_freq, subband_l, subband_h);
  106. if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
  107. return -ENODATA;
  108. if (!rtwsar->set[subband_l])
  109. *cfg = rtwsar->cfg[subband_h];
  110. else if (!rtwsar->set[subband_h])
  111. *cfg = rtwsar->cfg[subband_l];
  112. else
  113. *cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
  114. return 0;
  115. }
  116. static const
  117. struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
  118. [RTW89_SAR_SOURCE_COMMON] = {
  119. .descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
  120. .txpwr_factor_sar = 2,
  121. .query_sar_config = rtw89_query_sar_config_common,
  122. },
  123. };
  124. #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
  125. do { \
  126. typeof(_src) _s = (_src); \
  127. typeof(_dev) _d = (_dev); \
  128. BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
  129. BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
  130. lockdep_assert_held(&_d->mutex); \
  131. _d->sar._cfg_name = *(_cfg_data); \
  132. _d->sar.src = _s; \
  133. } while (0)
  134. static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
  135. {
  136. const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
  137. s32 cfg_mac;
  138. cfg_mac = fct > fct_mac ?
  139. cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
  140. return (s8)clamp_t(s32, cfg_mac,
  141. RTW89_SAR_TXPWR_MAC_MIN,
  142. RTW89_SAR_TXPWR_MAC_MAX);
  143. }
  144. static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
  145. s8 cfg)
  146. {
  147. const u8 fct = sar_hdl->txpwr_factor_sar;
  148. if (fct > RTW89_TAS_FACTOR)
  149. return cfg << (fct - RTW89_TAS_FACTOR);
  150. else
  151. return cfg >> (RTW89_TAS_FACTOR - fct);
  152. }
  153. static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
  154. s8 cfg)
  155. {
  156. const u8 fct = sar_hdl->txpwr_factor_sar;
  157. if (fct > RTW89_TAS_FACTOR)
  158. return cfg >> (fct - RTW89_TAS_FACTOR);
  159. else
  160. return cfg << (RTW89_TAS_FACTOR - fct);
  161. }
  162. s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
  163. {
  164. const enum rtw89_sar_sources src = rtwdev->sar.src;
  165. /* its members are protected by rtw89_sar_set_src() */
  166. const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
  167. struct rtw89_tas_info *tas = &rtwdev->tas;
  168. s8 delta;
  169. int ret;
  170. s32 cfg;
  171. u8 fct;
  172. lockdep_assert_held(&rtwdev->mutex);
  173. if (src == RTW89_SAR_SOURCE_NONE)
  174. return RTW89_SAR_TXPWR_MAC_MAX;
  175. ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
  176. if (ret)
  177. return RTW89_SAR_TXPWR_MAC_MAX;
  178. if (tas->enable) {
  179. switch (tas->state) {
  180. case RTW89_TAS_STATE_DPR_OFF:
  181. return RTW89_SAR_TXPWR_MAC_MAX;
  182. case RTW89_TAS_STATE_DPR_ON:
  183. delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
  184. cfg -= delta;
  185. break;
  186. case RTW89_TAS_STATE_DPR_FORBID:
  187. default:
  188. break;
  189. }
  190. }
  191. fct = sar_hdl->txpwr_factor_sar;
  192. return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
  193. }
  194. void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
  195. {
  196. const enum rtw89_sar_sources src = rtwdev->sar.src;
  197. /* its members are protected by rtw89_sar_set_src() */
  198. const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
  199. const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
  200. int ret;
  201. s32 cfg;
  202. u8 fct;
  203. lockdep_assert_held(&rtwdev->mutex);
  204. if (src == RTW89_SAR_SOURCE_NONE) {
  205. seq_puts(m, "no SAR is applied\n");
  206. return;
  207. }
  208. seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
  209. ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
  210. if (ret) {
  211. seq_printf(m, "config: return code: %d\n", ret);
  212. seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
  213. RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
  214. return;
  215. }
  216. fct = sar_hdl->txpwr_factor_sar;
  217. seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
  218. }
  219. void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
  220. {
  221. struct rtw89_tas_info *tas = &rtwdev->tas;
  222. if (!tas->enable) {
  223. seq_puts(m, "no TAS is applied\n");
  224. return;
  225. }
  226. seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
  227. seq_printf(m, "TAS delta: %d\n", tas->delta);
  228. }
  229. static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
  230. const struct rtw89_sar_cfg_common *sar)
  231. {
  232. enum rtw89_sar_sources src;
  233. int ret = 0;
  234. mutex_lock(&rtwdev->mutex);
  235. src = rtwdev->sar.src;
  236. if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
  237. rtw89_warn(rtwdev, "SAR source: %d is in use", src);
  238. ret = -EBUSY;
  239. goto exit;
  240. }
  241. rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
  242. rtw89_core_set_chip_txpwr(rtwdev);
  243. exit:
  244. mutex_unlock(&rtwdev->mutex);
  245. return ret;
  246. }
  247. static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
  248. { .start_freq = 2412, .end_freq = 2484, },
  249. { .start_freq = 5180, .end_freq = 5320, },
  250. { .start_freq = 5500, .end_freq = 5720, },
  251. { .start_freq = 5745, .end_freq = 5825, },
  252. { .start_freq = 5955, .end_freq = 6155, },
  253. { .start_freq = 6175, .end_freq = 6415, },
  254. { .start_freq = 6435, .end_freq = 6515, },
  255. { .start_freq = 6535, .end_freq = 6695, },
  256. { .start_freq = 6715, .end_freq = 6875, },
  257. { .start_freq = 6875, .end_freq = 7115, },
  258. };
  259. const struct cfg80211_sar_capa rtw89_sar_capa = {
  260. .type = NL80211_SAR_TYPE_POWER,
  261. .num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
  262. .freq_ranges = rtw89_common_sar_freq_ranges,
  263. };
  264. int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
  265. const struct cfg80211_sar_specs *sar)
  266. {
  267. struct rtw89_dev *rtwdev = hw->priv;
  268. struct rtw89_sar_cfg_common sar_common = {0};
  269. u8 fct;
  270. u32 freq_start;
  271. u32 freq_end;
  272. s32 power;
  273. u32 i, idx;
  274. if (sar->type != NL80211_SAR_TYPE_POWER)
  275. return -EINVAL;
  276. fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
  277. for (i = 0; i < sar->num_sub_specs; i++) {
  278. idx = sar->sub_specs[i].freq_range_index;
  279. if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
  280. return -EINVAL;
  281. freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
  282. freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
  283. power = sar->sub_specs[i].power;
  284. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  285. "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
  286. freq_start, freq_end, power, BIT(fct));
  287. sar_common.set[idx] = true;
  288. sar_common.cfg[idx] = power;
  289. }
  290. return rtw89_apply_sar_common(rtwdev, &sar_common);
  291. }
  292. static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
  293. {
  294. const enum rtw89_sar_sources src = rtwdev->sar.src;
  295. /* its members are protected by rtw89_sar_set_src() */
  296. const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
  297. struct rtw89_tas_info *tas = &rtwdev->tas;
  298. s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
  299. s32 dpr_on_threshold, dpr_off_threshold, cfg;
  300. enum rtw89_tas_state state = tas->state;
  301. const struct rtw89_chan *chan;
  302. int ret;
  303. lockdep_assert_held(&rtwdev->mutex);
  304. if (src == RTW89_SAR_SOURCE_NONE)
  305. return;
  306. chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
  307. ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
  308. if (ret)
  309. return;
  310. cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
  311. if (tas->delta >= cfg) {
  312. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  313. "TAS delta exceed SAR limit\n");
  314. state = RTW89_TAS_STATE_DPR_FORBID;
  315. goto out;
  316. }
  317. dpr_on_threshold = cfg;
  318. dpr_off_threshold = cfg - tas->dpr_gap;
  319. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  320. "DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
  321. dpr_on_threshold, dpr_off_threshold, txpwr_avg);
  322. if (txpwr_avg >= dpr_on_threshold)
  323. state = RTW89_TAS_STATE_DPR_ON;
  324. else if (txpwr_avg < dpr_off_threshold)
  325. state = RTW89_TAS_STATE_DPR_OFF;
  326. out:
  327. if (tas->state == state)
  328. return;
  329. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  330. "TAS old state: %d, new state: %d\n", tas->state, state);
  331. tas->state = state;
  332. rtw89_core_set_chip_txpwr(rtwdev);
  333. }
  334. void rtw89_tas_init(struct rtw89_dev *rtwdev)
  335. {
  336. struct rtw89_tas_info *tas = &rtwdev->tas;
  337. int ret;
  338. u8 val;
  339. ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &val);
  340. if (ret) {
  341. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  342. "acpi: cannot get TAS: %d\n", ret);
  343. return;
  344. }
  345. switch (val) {
  346. case 0:
  347. tas->enable = false;
  348. break;
  349. case 1:
  350. tas->enable = true;
  351. break;
  352. default:
  353. break;
  354. }
  355. if (!tas->enable) {
  356. rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
  357. return;
  358. }
  359. tas->dpr_gap = RTW89_TAS_DPR_GAP;
  360. tas->delta = RTW89_TAS_DELTA;
  361. }
  362. void rtw89_tas_reset(struct rtw89_dev *rtwdev)
  363. {
  364. struct rtw89_tas_info *tas = &rtwdev->tas;
  365. if (!tas->enable)
  366. return;
  367. memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
  368. tas->total_txpwr = 0;
  369. tas->cur_idx = 0;
  370. tas->state = RTW89_TAS_STATE_DPR_OFF;
  371. }
  372. static const struct rtw89_reg_def txpwr_regs[] = {
  373. {R_PATH0_TXPWR, B_PATH0_TXPWR},
  374. {R_PATH1_TXPWR, B_PATH1_TXPWR},
  375. };
  376. void rtw89_tas_track(struct rtw89_dev *rtwdev)
  377. {
  378. struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
  379. const enum rtw89_sar_sources src = rtwdev->sar.src;
  380. u8 max_nss_num = rtwdev->chip->rf_path_num;
  381. struct rtw89_tas_info *tas = &rtwdev->tas;
  382. s16 tmp, txpwr, instant_txpwr = 0;
  383. u32 val;
  384. int i;
  385. if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
  386. return;
  387. if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
  388. return;
  389. for (i = 0; i < max_nss_num; i++) {
  390. val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
  391. txpwr_regs[i].mask);
  392. tmp = sign_extend32(val, 8);
  393. if (tmp <= 0)
  394. return;
  395. instant_txpwr += tmp;
  396. }
  397. instant_txpwr /= max_nss_num;
  398. /* in unit of 0.25 dBm multiply by percentage */
  399. txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
  400. tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
  401. tas->txpwr_history[tas->cur_idx] = txpwr;
  402. rtw89_debug(rtwdev, RTW89_DBG_SAR,
  403. "instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
  404. instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
  405. tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
  406. rtw89_tas_state_update(rtwdev);
  407. }
  408. #endif