efuse.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2. /* Copyright(c) 2019-2020 Realtek Corporation
  3. */
  4. #include "debug.h"
  5. #include "efuse.h"
  6. #include "mac.h"
  7. #include "reg.h"
  8. #define EF_FV_OFSET 0x5ea
  9. #define EF_CV_MASK GENMASK(7, 4)
  10. #define EF_CV_INV 15
  11. enum rtw89_efuse_bank {
  12. RTW89_EFUSE_BANK_WIFI,
  13. RTW89_EFUSE_BANK_BT,
  14. };
  15. static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev,
  16. enum rtw89_efuse_bank bank)
  17. {
  18. u8 val;
  19. if (rtwdev->chip->chip_id != RTL8852A)
  20. return 0;
  21. val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
  22. B_AX_EF_CELL_SEL_MASK);
  23. if (bank == val)
  24. return 0;
  25. rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK,
  26. bank);
  27. val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
  28. B_AX_EF_CELL_SEL_MASK);
  29. if (bank == val)
  30. return 0;
  31. return -EBUSY;
  32. }
  33. static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en)
  34. {
  35. if (en)
  36. rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
  37. else
  38. rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
  39. }
  40. static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
  41. {
  42. enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
  43. struct rtw89_hal *hal = &rtwdev->hal;
  44. if (chip_id == RTL8852A)
  45. return;
  46. rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
  47. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
  48. fsleep(1000);
  49. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
  50. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
  51. if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
  52. rtw89_enable_otp_burst_mode(rtwdev, true);
  53. }
  54. static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
  55. {
  56. enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
  57. struct rtw89_hal *hal = &rtwdev->hal;
  58. if (chip_id == RTL8852A)
  59. return;
  60. if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
  61. rtw89_enable_otp_burst_mode(rtwdev, false);
  62. rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
  63. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
  64. fsleep(1000);
  65. rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
  66. rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
  67. }
  68. static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map,
  69. u32 dump_addr, u32 dump_size)
  70. {
  71. u32 efuse_ctl;
  72. u32 addr;
  73. int ret;
  74. rtw89_enable_efuse_pwr_cut_ddv(rtwdev);
  75. for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
  76. efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK);
  77. rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY);
  78. ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
  79. efuse_ctl & B_AX_EF_RDY, 1, 1000000,
  80. true, rtwdev, R_AX_EFUSE_CTRL);
  81. if (ret)
  82. return -EBUSY;
  83. *map++ = (u8)(efuse_ctl & 0xff);
  84. }
  85. rtw89_disable_efuse_pwr_cut_ddv(rtwdev);
  86. return 0;
  87. }
  88. static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map,
  89. u32 dump_addr, u32 dump_size)
  90. {
  91. u32 addr;
  92. u8 val8;
  93. int err;
  94. int ret;
  95. for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
  96. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK);
  97. if (ret)
  98. return ret;
  99. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR,
  100. addr & 0xff, XTAL_SI_LOW_ADDR_MASK);
  101. if (ret)
  102. return ret;
  103. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
  104. XTAL_SI_HIGH_ADDR_MASK);
  105. if (ret)
  106. return ret;
  107. ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
  108. XTAL_SI_MODE_SEL_MASK);
  109. if (ret)
  110. return ret;
  111. ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
  112. !err && (val8 & XTAL_SI_RDY),
  113. 1, 10000, false,
  114. rtwdev, XTAL_SI_CTRL, &val8);
  115. if (ret) {
  116. rtw89_warn(rtwdev, "failed to read dav efuse\n");
  117. return ret;
  118. }
  119. ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
  120. if (ret)
  121. return ret;
  122. *map++ = val8;
  123. }
  124. return 0;
  125. }
  126. static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map,
  127. u32 dump_addr, u32 dump_size, bool dav)
  128. {
  129. int ret;
  130. if (!map || dump_size == 0)
  131. return 0;
  132. rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI);
  133. if (dav) {
  134. ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size);
  135. if (ret)
  136. return ret;
  137. } else {
  138. ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size);
  139. if (ret)
  140. return ret;
  141. }
  142. return 0;
  143. }
  144. #define invalid_efuse_header(hdr1, hdr2) \
  145. ((hdr1) == 0xff || (hdr2) == 0xff)
  146. #define invalid_efuse_content(word_en, i) \
  147. (((word_en) & BIT(i)) != 0x0)
  148. #define get_efuse_blk_idx(hdr1, hdr2) \
  149. ((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4))
  150. #define block_idx_to_logical_idx(blk_idx, i) \
  151. (((blk_idx) << 3) + ((i) << 1))
  152. static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map,
  153. u8 *log_map)
  154. {
  155. u32 physical_size = rtwdev->chip->physical_efuse_size;
  156. u32 logical_size = rtwdev->chip->logical_efuse_size;
  157. u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size;
  158. u32 phy_idx = sec_ctrl_size;
  159. u32 log_idx;
  160. u8 hdr1, hdr2;
  161. u8 blk_idx;
  162. u8 word_en;
  163. int i;
  164. if (!phy_map)
  165. return 0;
  166. while (phy_idx < physical_size - sec_ctrl_size) {
  167. hdr1 = phy_map[phy_idx];
  168. hdr2 = phy_map[phy_idx + 1];
  169. if (invalid_efuse_header(hdr1, hdr2))
  170. break;
  171. blk_idx = get_efuse_blk_idx(hdr1, hdr2);
  172. word_en = hdr2 & 0xf;
  173. phy_idx += 2;
  174. for (i = 0; i < 4; i++) {
  175. if (invalid_efuse_content(word_en, i))
  176. continue;
  177. log_idx = block_idx_to_logical_idx(blk_idx, i);
  178. if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 ||
  179. log_idx + 1 > logical_size)
  180. return -EINVAL;
  181. log_map[log_idx] = phy_map[phy_idx];
  182. log_map[log_idx + 1] = phy_map[phy_idx + 1];
  183. phy_idx += 2;
  184. }
  185. }
  186. return 0;
  187. }
  188. int rtw89_parse_efuse_map(struct rtw89_dev *rtwdev)
  189. {
  190. u32 phy_size = rtwdev->chip->physical_efuse_size;
  191. u32 log_size = rtwdev->chip->logical_efuse_size;
  192. u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
  193. u32 dav_log_size = rtwdev->chip->dav_log_efuse_size;
  194. u32 full_log_size = log_size + dav_log_size;
  195. u8 *phy_map = NULL;
  196. u8 *log_map = NULL;
  197. u8 *dav_phy_map = NULL;
  198. u8 *dav_log_map = NULL;
  199. int ret;
  200. if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS)
  201. rtwdev->efuse.valid = true;
  202. else
  203. rtw89_warn(rtwdev, "failed to check efuse autoload\n");
  204. phy_map = kmalloc(phy_size, GFP_KERNEL);
  205. log_map = kmalloc(full_log_size, GFP_KERNEL);
  206. if (dav_phy_size && dav_log_size) {
  207. dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
  208. dav_log_map = log_map + log_size;
  209. }
  210. if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) {
  211. ret = -ENOMEM;
  212. goto out_free;
  213. }
  214. ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false);
  215. if (ret) {
  216. rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
  217. goto out_free;
  218. }
  219. ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true);
  220. if (ret) {
  221. rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
  222. goto out_free;
  223. }
  224. memset(log_map, 0xff, full_log_size);
  225. ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map);
  226. if (ret) {
  227. rtw89_warn(rtwdev, "failed to dump efuse logical map\n");
  228. goto out_free;
  229. }
  230. ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map);
  231. if (ret) {
  232. rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n");
  233. goto out_free;
  234. }
  235. rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size);
  236. ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map);
  237. if (ret) {
  238. rtw89_warn(rtwdev, "failed to read efuse map\n");
  239. goto out_free;
  240. }
  241. out_free:
  242. kfree(dav_phy_map);
  243. kfree(log_map);
  244. kfree(phy_map);
  245. return ret;
  246. }
  247. int rtw89_parse_phycap_map(struct rtw89_dev *rtwdev)
  248. {
  249. u32 phycap_addr = rtwdev->chip->phycap_addr;
  250. u32 phycap_size = rtwdev->chip->phycap_size;
  251. u8 *phycap_map = NULL;
  252. int ret = 0;
  253. if (!phycap_size)
  254. return 0;
  255. phycap_map = kmalloc(phycap_size, GFP_KERNEL);
  256. if (!phycap_map)
  257. return -ENOMEM;
  258. ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map,
  259. phycap_addr, phycap_size, false);
  260. if (ret) {
  261. rtw89_warn(rtwdev, "failed to dump phycap map\n");
  262. goto out_free;
  263. }
  264. ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
  265. if (ret) {
  266. rtw89_warn(rtwdev, "failed to read phycap map\n");
  267. goto out_free;
  268. }
  269. out_free:
  270. kfree(phycap_map);
  271. return ret;
  272. }
  273. int rtw89_read_efuse_ver(struct rtw89_dev *rtwdev, u8 *ecv)
  274. {
  275. int ret;
  276. u8 val;
  277. ret = rtw89_dump_physical_efuse_map(rtwdev, &val, EF_FV_OFSET, 1, false);
  278. if (ret)
  279. return ret;
  280. *ecv = u8_get_bits(val, EF_CV_MASK);
  281. if (*ecv == EF_CV_INV)
  282. return -ENOENT;
  283. return 0;
  284. }
  285. EXPORT_SYMBOL(rtw89_read_efuse_ver);