kindhuge 32905bbf5d chore: remove repetitive words | 7 ay önce | |
---|---|---|
.. | ||
include | 9 ay önce | |
lib | 9 ay önce | |
LICENSE | 9 ay önce | |
README.md | 7 ay önce | |
config.h | 9 ay önce |
This is an implementation of a base64 stream encoding/decoding library in C99 with SIMD (AVX2, AVX512, NEON, AArch64/NEON, SSSE3, SSE4.1, SSE4.2, AVX) and OpenMP acceleration. It also contains wrapper functions to encode/decode simple length-delimited strings. This library aims to be:
On x86, the library does runtime feature detection. The first time it's called, the library will determine the appropriate encoding/decoding routines for the machine. It then remembers them for the lifetime of the program. If your processor supports AVX2, SSSE3, SSE4.1, SSE4.2 or AVX instructions, the library will pick an optimized codec that lets it encode/decode 12 or 24 bytes at a time, which gives a speedup of four or more times compared to the "plain" bytewise codec.
AVX512 support is only for encoding at present, utilizing the AVX512 VL and VBMI instructions. Decoding part reused AVX2 implementations. For CPUs later than Cannonlake (manufactured in 2018) supports these instructions.
NEON support is hardcoded to on or off at compile time, because portable runtime feature detection is unavailable on ARM.
Even if your processor does not support SIMD instructions, this is a very fast library. The fallback routine can process 32 or 64 bits of input in one round, depending on your processor's word width, which still makes it significantly faster than naive bytewise implementations. On some 64-bit machines, the 64-bit routines even outperform the SSSE3 ones.
To the author's knowledge, at the time of original release, this was the only Base64 library to offer SIMD acceleration. The author wrote an article explaining one possible SIMD approach to encoding/decoding Base64. The article can help figure out what the code is doing, and why.
Notable features:
The original AVX2, NEON and Aarch64/NEON codecs were generously contributed by Inkymail, who, in their fork, also implemented some additional features. Their work is slowly being backported into this project.
The SSSE3 and AVX2 codecs were substantially improved by using some very clever optimizations described by Wojciech Muła in a series of articles. His own code is here.
The AVX512 encoder is based on code from Wojciech Muła's base64simd library.
The OpenMP implementation was added by Ferry Toth (@htot) from Exalon Delft.
The lib
directory contains the code for the actual library.
Typing make
in the toplevel directory will build lib/libbase64.o
and bin/base64
.
The first is a single, self-contained object file that you can link into your own project.
The second is a standalone test binary that works similarly to the base64
system utility.
The matching header file needed to use this library is in include/libbase64.h
.
To compile just the "plain" library without SIMD codecs, type:
make lib/libbase64.o
Optional SIMD codecs can be included by specifying the AVX2_CFLAGS
, AVX512_CFLAGS
,
NEON32_CFLAGS
, NEON64_CFLAGS
, SSSE3_CFLAGS
, SSE41_CFLAGS
, SSE42_CFLAGS
and/or AVX_CFLAGS
environment variables.
A typical build invocation on x86 looks like this:
AVX2_CFLAGS=-mavx2 SSSE3_CFLAGS=-mssse3 SSE41_CFLAGS=-msse4.1 SSE42_CFLAGS=-msse4.2 AVX_CFLAGS=-mavx make lib/libbase64.o
To build and include the AVX2 codec, set the AVX2_CFLAGS
environment variable to a value that will turn on AVX2 support in your compiler, typically -mavx2
.
Example:
AVX2_CFLAGS=-mavx2 make
To build and include the AVX512 codec, set the AVX512_CFLAGS
environment variable to a value that will turn on AVX512 support in your compiler, typically -mavx512vl -mavx512vbmi
.
Example:
AVX512_CFLAGS="-mavx512vl -mavx512vbmi" make
The codec will only be used if runtime feature detection shows that the target machine supports AVX2.
To build and include the SSSE3 codec, set the SSSE3_CFLAGS
environment variable to a value that will turn on SSSE3 support in your compiler, typically -mssse3
.
Example:
SSSE3_CFLAGS=-mssse3 make
The codec will only be used if runtime feature detection shows that the target machine supports SSSE3.
This library includes two NEON codecs: one for regular 32-bit ARM and one for the 64-bit AArch64 with NEON, which has double the amount of SIMD registers and can do full 64-byte table lookups. These codecs encode in 48-byte chunks and decode in massive 64-byte chunks, so they had to be augmented with an uint32/64 codec to stay fast on smaller inputs!
Use LLVM/Clang for compiling the NEON codecs.
The code generation of at least GCC 4.6 (the version shipped with Raspbian and used for testing) contains a bug when compiling vstq4_u8()
, and the generated assembly code is of low quality.
NEON intrinsics are a known weak area of GCC.
Clang does a better job.
NEON support can unfortunately not be portably detected at runtime from userland (the mrc
instruction is privileged), so the default value for using the NEON codec is determined at compile-time.
But you can do your own runtime detection.
You can include the NEON codec and make it the default, then do a runtime check if the CPU has NEON support, and if not, force a downgrade to non-NEON with BASE64_FORCE_PLAIN
.
These are your options:
BASE64_FORCE_PLAIN
;For option 1, simply don't specify any NEON-specific compiler flags at all, like so:
CC=clang CFLAGS="-march=armv6" make
For option 2, keep your CFLAGS
plain, but set the NEON32_CFLAGS
environment variable to a value that will build NEON support.
The line below, for instance, will build all the code at ARMv6 level, except for the NEON codec, which is built at ARMv7.
It will also make the NEON codec the default.
For ARMv6 platforms, override that default at runtime with the BASE64_FORCE_PLAIN
flag.
No ARMv7/NEON code will then be touched.
CC=clang CFLAGS="-march=armv6" NEON32_CFLAGS="-march=armv7 -mfpu=neon" make
For option 3, put everything in your CFLAGS
and use a stub, but non-empty, NEON32_CFLAGS
.
This example works for the Raspberry Pi 2B V1.1, which has NEON support:
CC=clang CFLAGS="-march=armv7 -mtune=cortex-a7" NEON32_CFLAGS="-mfpu=neon" make
To build and include the NEON64 codec, use CFLAGS
as usual to define the platform and set NEON64_CFLAGS
to a nonempty stub.
(The AArch64 target has mandatory NEON64 support.)
Example:
CC=clang CFLAGS="--target=aarch64-linux-gnu -march=armv8-a" NEON64_CFLAGS=" " make
To enable OpenMP on GCC you need to build with -fopenmp
. This can be by setting the OPENMP
environment variable to 1
.
Example:
OPENMP=1 make
This will let the compiler define _OPENMP
, which in turn will include the OpenMP optimized lib_openmp.c
into lib.c
.
By default the number of parallel threads will be equal to the number of cores of the processor. On a quad core with hyperthreading eight cores will be detected, but hyperthreading will not increase the performance.
To get verbose information about OpenMP start the program with OMP_DISPLAY_ENV=VERBOSE
, for instance
OMP_DISPLAY_ENV=VERBOSE test/benchmark
To put a limit on the number of threads, start the program with OMP_THREAD_LIMIT=n
, for instance
OMP_THREAD_LIMIT=2 test/benchmark
An example of running a benchmark with OpenMP, SSSE3 and AVX2 enabled:
make clean && OPENMP=1 SSSE3_CFLAGS=-mssse3 AVX2_CFLAGS=-mavx2 make && OPENMP=1 make -C test
Strings are represented as a pointer and a length; they are not
zero-terminated. This was a conscious design decision. In the decoding step,
relying on zero-termination would make no sense since the output could contain
legitimate zero bytes. In the encoding step, returning the length saves the
overhead of calling strlen()
on the output. If you insist on the trailing
zero, you can easily add it yourself at the given offset.
Some API calls take a flags
argument.
That argument can be used to force the use of a specific codec, even if that codec is a no-op in the current build.
Mainly there for testing purposes, this is also useful on ARM where the only way to do runtime NEON detection is to ask the OS if it's available.
The following constants can be used:
BASE64_FORCE_AVX2
BASE64_FORCE_AVX512
BASE64_FORCE_NEON32
BASE64_FORCE_NEON64
BASE64_FORCE_PLAIN
BASE64_FORCE_SSSE3
BASE64_FORCE_SSE41
BASE64_FORCE_SSE42
BASE64_FORCE_AVX
Set flags
to 0
for the default behavior, which is runtime feature detection on x86, a compile-time fixed codec on ARM, and the plain codec on other platforms.
void base64_encode
( const char *src
, size_t srclen
, char *out
, size_t *outlen
, int flags
) ;
Wrapper function to encode a plain string of given length.
Output is written to out
without trailing zero.
Output length in bytes is written to outlen
.
The buffer in out
has been allocated by the caller and is at least 4/3 the size of the input.
void base64_stream_encode_init
( struct base64_state *state
, int flags
) ;
Call this before calling base64_stream_encode()
to init the state.
void base64_stream_encode
( struct base64_state *state
, const char *src
, size_t srclen
, char *out
, size_t *outlen
) ;
Encodes the block of data of given length at src
, into the buffer at out
.
Caller is responsible for allocating a large enough out-buffer; it must be at least 4/3 the size of the in-buffer, but take some margin.
Places the number of new bytes written into outlen
(which is set to zero when the function starts).
Does not zero-terminate or finalize the output.
void base64_stream_encode_final
( struct base64_state *state
, char *out
, size_t *outlen
) ;
Finalizes the output begun by previous calls to base64_stream_encode()
.
Adds the required end-of-stream markers if appropriate.
outlen
is modified and will contain the number of new bytes written at out
(which will quite often be zero).
int base64_decode
( const char *src
, size_t srclen
, char *out
, size_t *outlen
, int flags
) ;
Wrapper function to decode a plain string of given length.
Output is written to out
without trailing zero. Output length in bytes is written to outlen
.
The buffer in out
has been allocated by the caller and is at least 3/4 the size of the input.
Returns 1
for success, and 0
when a decode error has occured due to invalid input.
Returns -1
if the chosen codec is not included in the current build.
void base64_stream_decode_init
( struct base64_state *state
, int flags
) ;
Call this before calling base64_stream_decode()
to init the state.
int base64_stream_decode
( struct base64_state *state
, const char *src
, size_t srclen
, char *out
, size_t *outlen
) ;
Decodes the block of data of given length at src
, into the buffer at out
.
Caller is responsible for allocating a large enough out-buffer; it must be at least 3/4 the size of the in-buffer, but take some margin.
Places the number of new bytes written into outlen
(which is set to zero when the function starts).
Does not zero-terminate the output.
Returns 1 if all is well, and 0 if a decoding error was found, such as an invalid character.
Returns -1 if the chosen codec is not included in the current build.
Used by the test harness to check whether a codec is available for testing.
A simple example of encoding a static string to base64 and printing the output to stdout:
#include <stdio.h> /* fwrite */
#include "libbase64.h"
int main ()
{
char src[] = "hello world";
char out[20];
size_t srclen = sizeof(src) - 1;
size_t outlen;
base64_encode(src, srclen, out, &outlen, 0);
fwrite(out, outlen, 1, stdout);
return 0;
}
A simple example (no error checking, etc) of stream encoding standard input to standard output:
#include <stdio.h>
#include "libbase64.h"
int main ()
{
size_t nread, nout;
char buf[12000], out[16000];
struct base64_state state;
// Initialize stream encoder:
base64_stream_encode_init(&state, 0);
// Read contents of stdin into buffer:
while ((nread = fread(buf, 1, sizeof(buf), stdin)) > 0) {
// Encode buffer:
base64_stream_encode(&state, buf, nread, out, &nout);
// If there's output, print it to stdout:
if (nout) {
fwrite(out, nout, 1, stdout);
}
// If an error occurred, exit the loop:
if (feof(stdin)) {
break;
}
}
// Finalize encoding:
base64_stream_encode_final(&state, out, &nout);
// If the finalizing resulted in extra output bytes, print them:
if (nout) {
fwrite(out, nout, 1, stdout);
}
return 0;
}
Also see bin/base64.c
for a simple re-implementation of the base64
utility.
A file or standard input is fed through the encoder/decoder, and the output is
written to standard output.
See tests/
for a small test suite. Testing is automated with
GitHub Actions, which builds and
tests the code across various architectures.
Benchmarks can be run with the built-in benchmark program as follows:
make -C test benchmark <buildflags> && test/benchmark
It will run an encoding and decoding benchmark for all of the compiled-in codecs.
The tables below contain some results on random machines. All numbers measured with a 10MB buffer in MB/sec, rounded to the nearest integer.
*: Update needed
x86 processors
Processor | Plain enc | Plain dec | SSSE3 enc | SSSE3 dec | AVX enc | AVX dec | AVX2 enc | AVX2 dec |
---|---|---|---|---|---|---|---|---|
i7-4771 @ 3.5 GHz | 833* | 1111* | 3333* | 4444* | TBD | TBD | 4999* | 6666* |
i7-4770 @ 3.4 GHz DDR1600 | 1790* | 3038* | 4899* | 4043* | 4796* | 5709* | 4681* | 6386* |
i7-4770 @ 3.4 GHz DDR1600 OPENMP 1 thread | 1784* | 3041* | 4945* | 4035* | 4776* | 5719* | 4661* | 6294* |
i7-4770 @ 3.4 GHz DDR1600 OPENMP 2 thread | 3401* | 5729* | 5489* | 7444* | 5003* | 8624* | 5105* | 8558* |
i7-4770 @ 3.4 GHz DDR1600 OPENMP 4 thread | 4884* | 7099* | 4917* | 7057* | 4799* | 7143* | 4902* | 7219* |
i7-4770 @ 3.4 GHz DDR1600 OPENMP 8 thread | 5212* | 8849* | 5284* | 9099* | 5289* | 9220* | 4849* | 9200* |
i7-4870HQ @ 2.5 GHz | 1471* | 3066* | 6721* | 6962* | 7015* | 8267* | 8328* | 11576* |
i5-4590S @ 3.0 GHz | 3356 | 3197 | 4363 | 6104 | 4243* | 6233 | 4160* | 6344 |
Xeon X5570 @ 2.93 GHz | 2161 | 1508 | 3160 | 3915 | - | - | - | - |
Pentium4 @ 3.4 GHz | 896 | 740 | - | - | - | - | - | - |
Atom N270 | 243 | 266 | 508 | 387 | - | - | - | - |
AMD E-450 | 645 | 564 | 625 | 634 | - | - | - | - |
Intel Edison @ 500 MHz | 79* | 92* | 152* | 172* | - | - | - | - |
Intel Edison @ 500 MHz OPENMP 2 thread | 158* | 184* | 300* | 343* | - | - | - | - |
Intel Edison @ 500 MHz (x86-64) | 162 | 119 | 209 | 164 | - | - | - | - |
Intel Edison @ 500 MHz (x86-64) 2 thread | 319 | 237 | 412 | 329 | - | - | - | - |
ARM processors
Processor | Plain enc | Plain dec | NEON32 enc | NEON32 dec | NEON64 enc | NEON64 dec |
---|---|---|---|---|---|---|
Raspberry PI B+ V1.2 | 46* | 40* | - | - | - | - |
Raspberry PI 2 B V1.1 | 85 | 141 | 300 | 225 | - | - |
Apple iPhone SE armv7 | 1056* | 895* | 2943* | 2618* | - | - |
Apple iPhone SE arm64 | 1061* | 1239* | - | - | 4098* | 3983* |
PowerPC processors
Processor | Plain enc | Plain dec |
---|---|---|
PowerPC E6500 @ 1.8GHz | 270* | 265* |
Benchmarks on i7-4770 @ 3.4 GHz DDR1600 with varrying buffer sizes:
Note: optimal buffer size to take advantage of the cache is in the range of 100 kB to 1 MB, leading to 12x faster AVX encoding/decoding compared to Plain, or a throughput of 24/27GB/sec.
Also note the performance degradation when the buffer size is less than 10 kB due to thread creation overhead.
To prevent this from happening lib_openmp.c
defines OMP_THRESHOLD 20000
, requiring at least a 20000 byte buffer to enable multithreading.
This repository is licensed under the BSD 2-clause License. See the LICENSE file.