123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- static inline int
- dec_loop_avx2_inner (const uint8_t **s, uint8_t **o, size_t *rounds)
- {
- const __m256i lut_lo = _mm256_setr_epi8(
- 0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
- 0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A,
- 0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
- 0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A);
- const __m256i lut_hi = _mm256_setr_epi8(
- 0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
- 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
- 0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
- 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10);
- const __m256i lut_roll = _mm256_setr_epi8(
- 0, 16, 19, 4, -65, -65, -71, -71,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 16, 19, 4, -65, -65, -71, -71,
- 0, 0, 0, 0, 0, 0, 0, 0);
- const __m256i mask_2F = _mm256_set1_epi8(0x2F);
- // Load input:
- __m256i str = _mm256_loadu_si256((__m256i *) *s);
- // See the SSSE3 decoder for an explanation of the algorithm.
- const __m256i hi_nibbles = _mm256_and_si256(_mm256_srli_epi32(str, 4), mask_2F);
- const __m256i lo_nibbles = _mm256_and_si256(str, mask_2F);
- const __m256i hi = _mm256_shuffle_epi8(lut_hi, hi_nibbles);
- const __m256i lo = _mm256_shuffle_epi8(lut_lo, lo_nibbles);
- if (!_mm256_testz_si256(lo, hi)) {
- return 0;
- }
- const __m256i eq_2F = _mm256_cmpeq_epi8(str, mask_2F);
- const __m256i roll = _mm256_shuffle_epi8(lut_roll, _mm256_add_epi8(eq_2F, hi_nibbles));
- // Now simply add the delta values to the input:
- str = _mm256_add_epi8(str, roll);
- // Reshuffle the input to packed 12-byte output format:
- str = dec_reshuffle(str);
- // Store the output:
- _mm256_storeu_si256((__m256i *) *o, str);
- *s += 32;
- *o += 24;
- *rounds -= 1;
- return 1;
- }
- static inline void
- dec_loop_avx2 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
- {
- if (*slen < 45) {
- return;
- }
- // Process blocks of 32 bytes per round. Because 8 extra zero bytes are
- // written after the output, ensure that there will be at least 13
- // bytes of input data left to cover the gap. (11 data bytes and up to
- // two end-of-string markers.)
- size_t rounds = (*slen - 13) / 32;
- *slen -= rounds * 32; // 32 bytes consumed per round
- *olen += rounds * 24; // 24 bytes produced per round
- do {
- if (rounds >= 8) {
- if (dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds)) {
- continue;
- }
- break;
- }
- if (rounds >= 4) {
- if (dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds)) {
- continue;
- }
- break;
- }
- if (rounds >= 2) {
- if (dec_loop_avx2_inner(s, o, &rounds) &&
- dec_loop_avx2_inner(s, o, &rounds)) {
- continue;
- }
- break;
- }
- dec_loop_avx2_inner(s, o, &rounds);
- break;
- } while (rounds > 0);
- // Adjust for any rounds that were skipped:
- *slen += rounds * 32;
- *olen -= rounds * 24;
- }
|