123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- /*
- * DSA key generation.
- */
- #include "misc.h"
- #include "ssh.h"
- #include "sshkeygen.h"
- #include "mpint.h"
- int dsa_generate(struct dsa_key *key, int bits, PrimeGenerationContext *pgc,
- ProgressReceiver *prog)
- {
- /*
- * Progress-reporting setup.
- *
- * DSA generation involves three potentially long jobs: inventing
- * the small prime q, the large prime p, and finding an order-q
- * element of the multiplicative group of p.
- *
- * The latter is done by finding an element whose order is
- * _divisible_ by q and raising it to the power of (p-1)/q. Every
- * element whose order is not divisible by q is a qth power of q
- * distinct elements whose order _is_ divisible by q, so the
- * probability of not finding a suitable element on the first try
- * is in the region of 1/q, i.e. at most 2^-159.
- *
- * (So the probability of success will end up indistinguishable
- * from 1 in IEEE standard floating point! But what can you do.)
- */
- ProgressPhase phase_q = primegen_add_progress_phase(pgc, prog, 160);
- ProgressPhase phase_p = primegen_add_progress_phase(pgc, prog, bits);
- double g_failure_probability = 1.0
- / (double)(1ULL << 53)
- / (double)(1ULL << 53)
- / (double)(1ULL << 53);
- ProgressPhase phase_g = progress_add_probabilistic(
- prog, estimate_modexp_cost(bits), 1.0 - g_failure_probability);
- progress_ready(prog);
- PrimeCandidateSource *pcs;
- /*
- * Generate q: a prime of length 160.
- */
- progress_start_phase(prog, phase_q);
- pcs = pcs_new(160);
- mp_int *q = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- /*
- * Now generate p: a prime of length `bits', such that p-1 is
- * divisible by q.
- */
- progress_start_phase(prog, phase_p);
- pcs = pcs_new(bits);
- pcs_require_residue_1_mod_prime(pcs, q);
- mp_int *p = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- /*
- * Next we need g. Raise 2 to the power (p-1)/q modulo p, and
- * if that comes out to one then try 3, then 4 and so on. As
- * soon as we hit a non-unit (and non-zero!) one, that'll do
- * for g.
- */
- progress_start_phase(prog, phase_g);
- mp_int *power = mp_div(p, q); /* this is floor(p/q) == (p-1)/q */
- mp_int *h = mp_from_integer(2);
- mp_int *g;
- while (1) {
- progress_report_attempt(prog);
- g = mp_modpow(h, power, p);
- if (mp_hs_integer(g, 2))
- break; /* got one */
- mp_free(g);
- mp_add_integer_into(h, h, 1);
- }
- mp_free(h);
- mp_free(power);
- progress_report_phase_complete(prog);
- /*
- * Now we're nearly done. All we need now is our private key x,
- * which should be a number between 1 and q-1 exclusive, and
- * our public key y = g^x mod p.
- */
- mp_int *two = mp_from_integer(2);
- mp_int *qm1 = mp_copy(q);
- mp_sub_integer_into(qm1, qm1, 1);
- mp_int *x = mp_random_in_range(two, qm1);
- mp_free(two);
- mp_free(qm1);
- key->sshk.vt = &ssh_dsa;
- key->p = p;
- key->q = q;
- key->g = g;
- key->x = x;
- key->y = mp_modpow(key->g, key->x, key->p);
- return 1;
- }
|