12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091 |
- /*
- * Implementation of ML-KEM, previously known as 'Crystals: Kyber'.
- */
- #include <stdio.h>
- #include <stdarg.h>
- #include <stdlib.h>
- #include <assert.h>
- #include "putty.h"
- #include "ssh.h"
- #include "mlkem.h"
- #include "smallmoduli.h"
- /* ----------------------------------------------------------------------
- * General definitions.
- */
- /*
- * Arithmetic in this system works mod 3329, which is prime, and
- * congruent to 1 mod 256 (in fact it's 13*256 + 1), meaning that
- * 256th roots of unity exist.
- */
- #define Q 3329
- /*
- * Parameter structure describing a particular instance of ML-KEM.
- */
- struct mlkem_params {
- int k; /* dimensions of the matrices used */
- int eta_1, eta_2; /* parameters for mlkem_matrix_poly_cbd calls */
- int d_u, d_v; /* bit counts to use in lossy compressed encoding */
- };
- /*
- * Specific parameter sets.
- */
- const mlkem_params mlkem_params_512 = {
- .k = 2, .eta_1 = 3, .eta_2 = 2, .d_u = 10, .d_v = 4,
- };
- const mlkem_params mlkem_params_768 = {
- .k = 3, .eta_1 = 2, .eta_2 = 2, .d_u = 10, .d_v = 4,
- };
- const mlkem_params mlkem_params_1024 = {
- .k = 4, .eta_1 = 2, .eta_2 = 2, .d_u = 11, .d_v = 5,
- };
- #define KMAX 4
- /* ----------------------------------------------------------------------
- * Number-theoretic transform on ring elements.
- *
- * The ring R used by ML-KEM is (Z/qZ)[X] / <X^256+1> (where q=3329 as
- * above). If the quotient polynomial were X^256-1 then it would split
- * into 256 linear factors, so that R could be expressed as the direct
- * sum of 256 rings (Z/qZ)[X] / <X-zeta^i> (where zeta is some fixed
- * primitive 256th root of unity mod q), each isomorphic to Z/qZ
- * itself. But X^256+1 only splits into 128 _quadratic_ factors, and
- * hence we can only decompose R as the direct sum of rings of the
- * form (Z/qZ)[X] / <X^2-zeta^j> for odd j, each a quadratic extension
- * of Z/qZ, and all mutually nonisomorphic. This means the NTT runs
- * one pass fewer than you'd "normally" expect, and also, multiplying
- * two elements of R in their NTT representation is not quite as
- * trivial as it would normally be - within each component ring of the
- * direct sum you have to do the multiplication slightly differently
- * depending on the power of zeta in its quotient polynomial.
- *
- * We take zeta=17 to be the canonical primitive 256th root of unity
- * for NTT purposes.
- */
- /*
- * First 128 powers of zeta, reordered by bit-reversing the 7-bit
- * index. That is, the nth element of this array contains
- * zeta^(bitrev7(n)). Used by the NTT itself.
- */
- static const uint16_t powers_reversed_order[128] = {
- 1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, 2786,
- 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, 1426, 2094,
- 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, 1197, 2304, 2277,
- 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, 2319, 1435, 807, 452,
- 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, 17,
- 2761, 583, 2649, 1637, 723, 2288, 1100, 1409, 2662, 3281, 233, 756, 2156,
- 3015, 3050, 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, 939, 2308, 2437,
- 2388, 733, 2337, 268, 641, 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645,
- 1063, 319, 2773, 757, 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143,
- 2150, 2775, 886, 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154,
- };
- /*
- * First 128 _odd_ powers of zeta: the nth element is
- * zeta^(2*bitrev7(n)+1). Each of these is used for multiplication in
- * one of the 128 quadratic-extension rings in the NTT decomposition.
- */
- static const uint16_t powers_odd_reversed_order[128] = {
- 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, 2288,
- 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, 756, 2573,
- 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, 2789, 540, 1789,
- 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, 939, 2390, 2308, 1021,
- 2437, 892, 2388, 941, 733, 2596, 2337, 992, 268, 3061, 641, 2688, 1584,
- 1745, 2298, 1031, 2037, 1292, 3220, 109, 375, 2954, 2549, 780, 2090, 1239,
- 1645, 1684, 1063, 2266, 319, 3010, 2773, 556, 757, 2572, 2099, 1230, 561,
- 2768, 2466, 863, 2594, 735, 2804, 525, 1092, 2237, 403, 2926, 1026, 2303,
- 1143, 2186, 2150, 1179, 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874,
- 1455, 1029, 2300, 2110, 1219, 2935, 394, 885, 2444, 2154, 1175,
- };
- /*
- * Convert a ring element into NTT representation.
- *
- * The input v is an array of 256 uint16_t, giving the coefficients of
- * a polynomial in X, with v[i] being the coefficient of X^i.
- *
- * v is modified in place. On output, adjacent pairs of elements of v
- * give the coefficients of a smaller polynomial in X, with the pair
- * v[2i],v[2i+1] being the coefficients of X^0 and X^1 respectively in
- * the ring (Z/qZ)[X] / <X^2 - k>, where k = powers_odd_reversed_order[i].
- */
- static void mlkem_ntt(uint16_t *v)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- size_t next_power = 1;
- for (size_t len = 128; len >= 2; len /= 2) {
- for (size_t start = 0; start < 256; start += 2*len) {
- uint16_t mult = powers_reversed_order[next_power++];
- for (size_t j = start; j < start + len; j++) {
- uint16_t t = reduce(mult * v[j + len], Q, Qrecip);
- v[j + len] = reduce(v[j] + Q - t, Q, Qrecip);
- v[j] = reduce(v[j] + t, Q, Qrecip);
- }
- }
- }
- }
- /*
- * Convert back from NTT representation. Exactly inverts mlkem_ntt().
- */
- static void mlkem_inverse_ntt(uint16_t *v)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- size_t next_power = 127;
- for (size_t len = 2; len <= 128; len *= 2) {
- for (size_t start = 0; start < 256; start += 2*len) {
- uint16_t mult = powers_reversed_order[next_power--];
- for (size_t j = start; j < start + len; j++) {
- uint16_t t = v[j];
- v[j] = reduce(t + v[j + len], Q, Qrecip);
- v[j + len] = reduce(mult * (v[j + len] + Q - t), Q, Qrecip);
- }
- }
- }
- for (size_t i = 0; i < 256; i++)
- v[i] = reduce(v[i] * 3303, Q, Qrecip);
- }
- /*
- * Multiply two elements of R in NTT representation.
- *
- * The output can alias an input completely, but mustn't alias one
- * partially.
- */
- static void mlkem_multiply_ntts(
- uint16_t *out, const uint16_t *a, const uint16_t *b)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- for (size_t i = 0; i < 128; i++) {
- uint16_t a0 = a[2*i], a1 = a[2*i+1];
- uint16_t b0 = b[2*i], b1 = b[2*i+1];
- uint16_t mult = powers_odd_reversed_order[i];
- uint16_t a1b1 = reduce(a1 * b1, Q, Qrecip);
- out[2*i] = reduce(a0 * b0 + a1b1 * mult, Q, Qrecip);
- out[2*i+1] = reduce(a0 * b1 + a1 * b0, Q, Qrecip);
- }
- }
- /* ----------------------------------------------------------------------
- * Operations on matrices over the ring R.
- *
- * Most of these don't mind whether the matrix contains ring elements
- * represented directly as polynomials, or in NTT form. The exception
- * is that mlkem_matrix_mul requires it to be in NTT form (because
- * multiplying is a huge pain in the ordinary representation).
- */
- typedef struct mlkem_matrix mlkem_matrix;
- struct mlkem_matrix {
- unsigned nrows, ncols;
- /*
- * (nrows * ncols * 256) 16-bit integers. Each 256-word block
- * contains an element of R; the blocks are in in row-major order,
- * so that (data + 256*(ncols*y + x)) points at the start of the
- * element in row y column x.
- */
- uint16_t *data;
- };
- /* Storage used for multiple matrices, to free all at once afterwards */
- typedef struct mlkem_matrix_storage mlkem_matrix_storage;
- struct mlkem_matrix_storage {
- uint16_t *data;
- size_t n; /* number of ring elements */
- };
- /*
- * Allocate space for multiple matrices. All the arrays of uint16_t
- * are allocated as a single big array. This makes it easy to free the
- * whole lot in one go afterwards.
- *
- * It also means that the arrays have a fixed memory relationship to
- * each other, which matters not at all during live use, but
- * eliminates spurious control-flow divergences in testsc based on
- * accidents of memory allocation when vectorised code checks two
- * memory regions to see if they alias. (The compiler-generated
- * aliasing check must do two comparisons, one for each direction, and
- * the order of those two regions in memory affects whether the first
- * comparison decides the second one is necessary.)
- *
- * The variadic arguments for this function consist of a sequence of
- * triples (mlkem_matrix *m, int nrows, int ncols), terminated by a
- * null matrix pointer.
- */
- static void mlkem_matrix_alloc(mlkem_matrix_storage *storage, ...)
- {
- va_list ap;
- mlkem_matrix *m;
- storage->n = 0;
- va_start(ap, storage);
- while ((m = va_arg(ap, mlkem_matrix *)) != NULL) {
- int nrows = va_arg(ap, int), ncols = va_arg(ap, int);
- storage->n += nrows * ncols;
- }
- va_end(ap);
- storage->data = snewn(256 * storage->n, uint16_t);
- size_t pos = 0;
- va_start(ap, storage);
- while ((m = va_arg(ap, mlkem_matrix *)) != NULL) {
- int nrows = va_arg(ap, int), ncols = va_arg(ap, int);
- m->nrows = nrows;
- m->ncols = ncols;
- m->data = storage->data + 256 * pos;
- pos += nrows * ncols;
- }
- va_end(ap);
- }
- /* Clear and free the storage allocated by mlkem_matrix_alloc. */
- static void mlkem_matrix_storage_free(mlkem_matrix_storage *storage)
- {
- smemclr(storage->data, 256 * storage->n * sizeof(uint16_t));
- sfree(storage->data);
- }
- /* Add two matrices. */
- static void mlkem_matrix_add(mlkem_matrix *out, const mlkem_matrix *left,
- const mlkem_matrix *right)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- assert(out->nrows == left->nrows);
- assert(out->ncols == left->ncols);
- assert(out->nrows == right->nrows);
- assert(out->ncols == right->ncols);
- for (size_t i = 0; i < out->nrows; i++) {
- for (size_t j = 0; j < out->ncols; j++) {
- const uint16_t *lv = left->data + 256*(i * left->ncols + j);
- const uint16_t *rv = right->data + 256*(i * right->ncols + j);
- uint16_t *ov = out->data + 256*(i * out->ncols + j);
- for (size_t p = 0; p < 256; p++)
- ov[p] = reduce(lv[p] + rv[p] , Q, Qrecip);
- }
- }
- }
- /* Subtract matrices. */
- static void mlkem_matrix_sub(mlkem_matrix *out, const mlkem_matrix *left,
- const mlkem_matrix *right)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- assert(out->nrows == left->nrows);
- assert(out->ncols == left->ncols);
- assert(out->nrows == right->nrows);
- assert(out->ncols == right->ncols);
- for (size_t i = 0; i < out->nrows; i++) {
- for (size_t j = 0; j < out->ncols; j++) {
- const uint16_t *lv = left->data + 256*(i * left->ncols + j);
- const uint16_t *rv = right->data + 256*(i * right->ncols + j);
- uint16_t *ov = out->data + 256*(i * out->ncols + j);
- for (size_t p = 0; p < 256; p++)
- ov[p] = reduce(lv[p] + Q - rv[p] , Q, Qrecip);
- }
- }
- }
- /* Convert every element of a matrix into NTT representation. */
- static void mlkem_matrix_ntt(mlkem_matrix *m)
- {
- for (size_t i = 0; i < m->nrows * m->ncols; i++)
- mlkem_ntt(m->data + i * 256);
- }
- /* Convert every element of a matrix out of NTT representation. */
- static void mlkem_matrix_inverse_ntt(mlkem_matrix *m)
- {
- for (size_t i = 0; i < m->nrows * m->ncols; i++)
- mlkem_inverse_ntt(m->data + i * 256);
- }
- /*
- * Multiply two matrices, assuming their elements to be currently in
- * NTT representation.
- *
- * The left input must have the same number of columns as the right
- * has rows, in the usual fashion. The output matrix is overwritten.
- *
- * If 'left_transposed' is true then the left matrix is used as if
- * transposed.
- */
- static void mlkem_matrix_mul(mlkem_matrix *out, const mlkem_matrix *left,
- const mlkem_matrix *right, bool left_transposed)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- size_t left_nrows = (left_transposed ? left->ncols : left->nrows);
- size_t left_ncols = (left_transposed ? left->nrows : left->ncols);
- assert(out->nrows == left_nrows);
- assert(left_ncols == right->nrows);
- assert(right->ncols == out->ncols);
- uint16_t work[256];
- for (size_t i = 0; i < out->nrows; i++) {
- for (size_t j = 0; j < out->ncols; j++) {
- uint16_t *thisout = out->data + 256 * (i * out->ncols + j);
- memset(thisout, 0, 256 * sizeof(uint16_t));
- for (size_t k = 0; k < right->nrows; k++) {
- size_t left_index = left_transposed ?
- k * left->ncols + i : i * left->ncols + k;
- const uint16_t *lv = left->data + 256*left_index;
- const uint16_t *rv = right->data + 256*(k * right->ncols + j);
- mlkem_multiply_ntts(work, lv, rv);
- for (size_t p = 0; p < 256; p++)
- thisout[p] = reduce(thisout[p] + work[p], Q, Qrecip);
- }
- }
- }
- smemclr(work, sizeof(work));
- }
- /* ----------------------------------------------------------------------
- * Random sampling functions to make up various kinds of randomised
- * matrix and vector.
- */
- static void mlkem_sample_ntt(uint16_t *output, ptrlen seed); /* forward ref */
- /*
- * Invent a matrix based on a 32-bit random seed rho.
- *
- * This matrix is logically part of the public (encryption) key: it's
- * not transmitted explicitly, but the seed is, so that the receiver
- * can reconstruct the same matrix. As a result, this function
- * _doesn't_ have to worry about side channel resistance, or even
- * leaving data lying around in arrays.
- */
- static void mlkem_matrix_from_seed(mlkem_matrix *m, const void *rho)
- {
- for (unsigned r = 0; r < m->nrows; r++) {
- for (unsigned c = 0; c < m->ncols; c++) {
- unsigned char seedbuf[34];
- memcpy(seedbuf, rho, 32);
- seedbuf[32] = c;
- seedbuf[33] = r;
- mlkem_sample_ntt(m->data + 256 * (r * m->nrows + c),
- make_ptrlen(seedbuf, sizeof(seedbuf)));
- }
- }
- }
- /*
- * Invent a single element of the ring R, uniformly at random, derived
- * in a specified way from the input random seed.
- *
- * Used as a subroutine of mlkem_matrix_from_seed() above. So, for the
- * same reasons, this doesn't have to worry about side channels,
- * making the 'rejection sampling' generation technique easy.
- *
- * The name SampleNTT (in the official spec) reflects the fact that
- * the output elements are regarded as being in NTT representation.
- * But since the NTT is a bijection, and the sampling is from the
- * uniform probability distribution over R, nothing in this function
- * actually needs to worry about that.
- */
- static void mlkem_sample_ntt(uint16_t *output, ptrlen seed)
- {
- ShakeXOF *sx = shake128_xof_from_input(seed);
- unsigned char bytebuf[4];
- bytebuf[3] = '\0';
- for (size_t pos = 0; pos < 256 ;) {
- /* Read 3 bytes into the low-order end of bytebuf. The fourth
- * byte is always 0, so this gives us a random 24-bit integer. */
- shake_xof_read(sx, &bytebuf, 3);
- uint32_t random24 = GET_32BIT_LSB_FIRST(bytebuf);
- /*
- * Split that integer up into two 12-bit ones, and use each
- * one if it's in range (taking care for the second one that
- * we didn't just reach the end of the buffer).
- *
- * This function is only used for generating matrices from an
- * element of the public key, so we can use data-dependent
- * control flow here without worrying about giving away
- * secrets.
- */
- uint16_t d1 = random24 & 0xFFF;
- uint16_t d2 = random24 >> 12;
- if (d1 < Q)
- output[pos++] = d1;
- if (d2 < Q && pos < 256)
- output[pos++] = d2;
- }
- shake_xof_free(sx);
- }
- /*
- * Invent a random vector, with its elements _not_ in NTT
- * representation, and all the coefficients very small integers (a lot
- * smaller than q) of one sign or the other.
- *
- * eta is a parameter of the probability distribution, sigma is an
- * input 32-byte random seed. Each element of the vector is made by a
- * separate hash operation based on sigma plus a distinguishing
- * integer suffix; 'offset' indicates the starting point for those
- * suffixes, so that the ith output value has suffix (offset+i).
- */
- static void mlkem_matrix_poly_cbd(
- mlkem_matrix *v, int eta, const void *sigma, int offset)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(Q);
- unsigned char seedbuf[33];
- memcpy(seedbuf, sigma, 32);
- unsigned char *randombuf = snewn(eta * 64, unsigned char);
- for (unsigned r = 0; r < v->nrows * v->ncols; r++) {
- seedbuf[32] = r + offset;
- ShakeXOF *sx = shake256_xof_from_input(make_ptrlen(seedbuf, 33));
- shake_xof_read(sx, randombuf, eta * 64);
- shake_xof_free(sx);
- for (size_t i = 0; i < 256; i++) {
- unsigned x = 0, y = 0;
- for (size_t j = 0; j < eta; j++) {
- size_t bitpos = 2 * i * eta + j;
- x += 1 & ((randombuf[bitpos >> 3]) >> (bitpos & 7));
- }
- for (size_t j = 0; j < eta; j++) {
- size_t bitpos = 2 * i * eta + eta + j;
- y += 1 & ((randombuf[bitpos >> 3]) >> (bitpos & 7));
- }
- v->data[256 * r + i] = reduce(x + Q - y, Q, Qrecip);
- }
- }
- smemclr(seedbuf, sizeof(seedbuf));
- smemclr(randombuf, eta * 64);
- sfree(randombuf);
- }
- /* ----------------------------------------------------------------------
- * Byte-encoding and decoding functions.
- */
- /*
- * Losslessly encode one or more elements of the ring R.
- *
- * Each polynomial coefficient, in the range [0,q), is represented as
- * a 12-bit integer. So encoding an entire ring element requires
- * (256*12)/8 = 384 bytes, and if that 384-byte string were
- * interpreted as a little-endian 3072-bit integer D, then the
- * coefficient of X^i could be recovered as (D >> (12*i)) & 0xFFF.
- *
- * The input is expected to be an array of 256*n uint16_t (often the
- * 'data' pointer in an mlkem_matrix). The output is 384*n bytes.
- */
- static void mlkem_byte_encode_lossless(
- void *outv, const uint16_t *in, size_t n)
- {
- unsigned char *out = (unsigned char *)outv;
- uint32_t buffer = 0, bufbits = 0;
- for (size_t i = 0; i < 256*n; i++) {
- buffer |= (uint32_t) in[i] << bufbits;
- bufbits += 12;
- while (bufbits >= 8) {
- *out++ = buffer & 0xFF;
- buffer >>= 8;
- bufbits -= 8;
- }
- }
- }
- /*
- * Decode a string written by mlkem_byte_encode_lossless.
- *
- * Each 12-bit value extracted from the input data is checked to make
- * sure it's in the range [0,q); if it's out of range, the whole
- * function fails and returns false. (But it need not do so in
- * constant time, because that's an "abandon the whole connection"
- * error, not a "subtly make things not work for the attacker" error.)
- */
- static bool mlkem_byte_decode_lossless(
- uint16_t *out, const void *inv, size_t n)
- {
- const unsigned char *in = (const unsigned char *)inv;
- uint32_t buffer = 0, bufbits = 0;
- for (size_t i = 0; i < 384*n; i++) {
- buffer |= (uint32_t) in[i] << bufbits;
- bufbits += 8;
- while (bufbits >= 12) {
- uint16_t value = buffer & 0xFFF;
- if (value >= Q)
- return false;
- *out++ = value;
- buffer >>= 12;
- bufbits -= 12;
- }
- }
- return true;
- }
- /*
- * Lossily encode one or more elements of R, using d bits for each
- * polynomial coefficient, for some d < 12. Each output d-bit value is
- * obtained as if by regarding the input coefficient as an integer in
- * the range [0,q), multiplying by 2^d/q, and rounding to the nearest
- * integer. (Since q is odd, 'round to nearest' can't have a tie.)
- *
- * This means that a large enough input coefficient can round up to
- * 2^d itself. In that situation the output d-bit value is 0.
- */
- static void mlkem_byte_encode_compressed(
- void *outv, const uint16_t *in, unsigned d, size_t n)
- {
- const uint64_t Qrecip = reciprocal_for_reduction(2*Q);
- unsigned char *out = (unsigned char *)outv;
- uint32_t buffer = 0, bufbits = 0;
- for (size_t i = 0; i < 256*n; i++) {
- uint32_t dividend = ((uint32_t)in[i] << (d+1)) + Q;
- uint32_t quotient;
- reduce_with_quot(dividend, "ient, 2*Q, Qrecip);
- buffer |= (uint32_t) (quotient & ((1 << d) - 1)) << bufbits;
- bufbits += d;
- while (bufbits >= 8) {
- *out++ = buffer & 0xFF;
- buffer >>= 8;
- bufbits -= 8;
- }
- }
- }
- /*
- * Decode the lossily encoded output of mlkem_byte_encode_compressed.
- *
- * Each d-bit chunk of the encoding is converted back into a
- * polynomial coefficient as if by multiplying by q/2^d and then
- * rounding to nearest. Unlike the rounding in the encode step, this
- * _can_ have a tie when an unrounded value is half way between two
- * integers. Ties are broken by rounding up (as if the whole rounding
- * were performed by the simple rounding method of adding 1/2 and then
- * truncating).
- *
- * Unlike the lossless decode function, this one can't fail input
- * validation, because any d-bit value generates some legal
- * coefficient.
- */
- static void mlkem_byte_decode_compressed(
- uint16_t *out, const void *inv, unsigned d, size_t n)
- {
- const unsigned char *in = (const unsigned char *)inv;
- uint32_t buffer = 0, bufbits = 0;
- for (size_t i = 0; i < 32*d*n; i++) {
- buffer |= (uint32_t) in[i] << bufbits;
- bufbits += 8;
- while (bufbits >= d) {
- uint32_t value = buffer & ((1 << d) - 1);
- *out++ = (value * (2*Q) + (1 << d)) >> (d + 1);;
- buffer >>= d;
- bufbits -= d;
- }
- }
- }
- /* ----------------------------------------------------------------------
- * The top-level ML-KEM functions.
- */
- /*
- * Innermost keygen function, exposed for side-channel testing, with
- * separate random values rho (public) and sigma (private), so that
- * testsc can vary sigma while leaving rho the same.
- */
- void mlkem_keygen_rho_sigma(
- BinarySink *ek_out, BinarySink *dk_out, const mlkem_params *params,
- const void *rho, const void *sigma, const void *z)
- {
- mlkem_matrix_storage storage[1];
- mlkem_matrix a[1], s[1], e[1], t[1];
- mlkem_matrix_alloc(storage,
- a, params->k, params->k,
- s, params->k, 1,
- e, params->k, 1,
- t, params->k, 1,
- (mlkem_matrix *)NULL);
- /*
- * Make a random k x k matrix A (regarded as in NTT form).
- */
- mlkem_matrix_from_seed(a, rho);
- /*
- * Make two column vectors s and e, with all components having
- * small polynomial coefficients, and then convert them _into_ NTT
- * form.
- */
- mlkem_matrix_poly_cbd(s, params->eta_1, sigma, 0);
- mlkem_matrix_poly_cbd(e, params->eta_1, sigma, params->k);
- mlkem_matrix_ntt(s);
- mlkem_matrix_ntt(e);
- /*
- * Compute the vector t = As + e.
- */
- mlkem_matrix_mul(t, a, s, false);
- mlkem_matrix_add(t, t, e);
- /*
- * The encryption key is the vector t, plus the random seed rho
- * from which anyone can reconstruct the matrix A.
- */
- unsigned char ek[1568];
- mlkem_byte_encode_lossless(ek, t->data, params->k);
- memcpy(ek + 384 * params->k, rho, 32);
- size_t eklen = 384 * params->k + 32;
- put_data(ek_out, ek, eklen);
- /*
- * The decryption key (for the internal "K-PKE" public-key system)
- * is the vector s.
- */
- unsigned char dk[1536];
- mlkem_byte_encode_lossless(dk, s->data, params->k);
- size_t dklen = 384 * params->k;
- /*
- * The decapsulation key, for the full ML-KEM, consists of
- * - the decryption key as above
- * - the encryption key
- * - an extra hash of the encryption key
- * - the random value z used for "implicit rejection", aka
- * constructing a useless output value if tampering is
- * detected. (I think so an attacker can't tell the difference
- * between "I was rumbled" and "I was undetected but my attempt
- * didn't generate the right key">)
- */
- put_data(dk_out, dk, dklen);
- put_data(dk_out, ek, eklen);
- ssh_hash *h = ssh_hash_new(&ssh_sha3_256);
- put_data(h, ek, eklen);
- unsigned char ekhash[32];
- ssh_hash_final(h, ekhash);
- put_data(dk_out, ekhash, 32);
- put_data(dk_out, z, 32);
- mlkem_matrix_storage_free(storage);
- smemclr(ek, sizeof(ek));
- smemclr(ekhash, sizeof(ekhash));
- smemclr(dk, sizeof(dk));
- }
- /*
- * Internal keygen function as described in the official spec, taking
- * random values d and z and deterministically constructing a key from
- * them. The test vectors are expressed in terms of this.
- */
- void mlkem_keygen_internal(
- BinarySink *ek, BinarySink *dk, const mlkem_params *params,
- const void *d, const void *z)
- {
- /* Hash the input randomness d to make two 32-byte values rho and sigma */
- unsigned char rho_sigma[64];
- ssh_hash *h = ssh_hash_new(&ssh_sha3_512);
- put_data(h, d, 32);
- put_byte(h, params->k);
- ssh_hash_final(h, rho_sigma);
- mlkem_keygen_rho_sigma(ek, dk, params, rho_sigma, rho_sigma + 32, z);
- smemclr(rho_sigma, sizeof(rho_sigma));
- }
- /*
- * Keygen function for live use, making up the values at random.
- */
- void mlkem_keygen(
- BinarySink *ek, BinarySink *dk, const mlkem_params *params)
- {
- unsigned char dz[64];
- random_read(dz, 64);
- mlkem_keygen_internal(ek, dk, params, dz, dz + 32);
- smemclr(dz, sizeof(dz));
- }
- /*
- * Internal encapsulation function from the official spec, taking a
- * random value m as input and behaving deterministically. Again used
- * for test vectors.
- */
- bool mlkem_encaps_internal(
- BinarySink *c_out, BinarySink *k_out,
- const mlkem_params *params, ptrlen ek, const void *m)
- {
- mlkem_matrix_storage storage[1];
- mlkem_matrix t[1], a[1], y[1], e1[1], e2[1], mu[1], u[1], v[1];
- mlkem_matrix_alloc(storage,
- t, params->k, 1,
- a, params->k, params->k,
- y, params->k, 1,
- e1, params->k, 1,
- e2, 1, 1,
- mu, 1, 1,
- u, params->k, 1,
- v, 1, 1,
- (mlkem_matrix *)NULL);
- /*
- * Validate input: ek must be the correct length, and its encoded
- * ring elements must not include any 16-bit integer intended to
- * represent a value mod q which is not in fact in the range [0,q).
- *
- * We test the latter property by decoding the matrix t, and
- * checking the success status returned by the decode.
- */
- if (ek.len != 384 * params->k + 32 ||
- !mlkem_byte_decode_lossless(t->data, ek.ptr, params->k)) {
- mlkem_matrix_storage_free(storage);
- return false;
- }
- /*
- * Regenerate the same matrix A used by key generation, from the
- * seed string rho at the end of ek.
- */
- mlkem_matrix_from_seed(a, (const unsigned char *)ek.ptr + 384 * params->k);
- /*
- * Hash the input randomness m, to get the value k we'll use as
- * the output shared secret, plus some randomness for making up
- * the vectors below.
- */
- unsigned char kr[64];
- unsigned char ekhash[32];
- ssh_hash *h;
- /* Hash the encryption key */
- h = ssh_hash_new(&ssh_sha3_256);
- put_datapl(h, ek);
- ssh_hash_final(h, ekhash);
- /* Hash the input randomness m with that hash */
- h = ssh_hash_new(&ssh_sha3_512);
- put_data(h, m, 32);
- put_data(h, ekhash, 32);
- ssh_hash_final(h, kr);
- const unsigned char *k = kr, *r = kr + 32;
- /*
- * Invent random k-element vectors y and e1, and a random scalar
- * e2 (here represented as a 1x1 matrix for the sake of not
- * proliferating internal helper functions). All are generated by
- * poly_cbd (i.e. their ring elements have polynomial coefficients
- * of small magnitude). y needs to be in NTT form.
- *
- * These generations all use r as their seed, which was the second
- * half of the 64-byte hash of the input m. We pass different
- * 'offset' values to mlkem_matrix_poly_cbd() to ensure the
- * generations are probabilistically independent.
- */
- mlkem_matrix_poly_cbd(y, params->eta_1, r, 0);
- mlkem_matrix_ntt(y);
- mlkem_matrix_poly_cbd(e1, params->eta_2, r, params->k);
- mlkem_matrix_poly_cbd(e2, params->eta_2, r, 2 * params->k);
- /*
- * Invent a random scalar mu (again imagined as a 1x1 matrix),
- * this time by doing lossy decompression of the random value m at
- * 1 bit per polynomial coefficient. That is, all the polynomial
- * coefficients of mu are either 0 or 1665 = (q+1)/2.
- *
- * This generation reuses the _input_ random value m, not either
- * half of the hash we made of it.
- */
- mlkem_byte_decode_compressed(mu->data, m, 1, 1);
- /*
- * Calculate a k-element vector u = A^T y + e1.
- *
- * A and y are in NTT representation, but e1 is not, and we don't
- * want the output to be in NTT form either. So we perform an
- * inverse NTT after the multiplication.
- */
- mlkem_matrix_mul(u, a, y, true); /* regard a as transposed */
- mlkem_matrix_inverse_ntt(u);
- mlkem_matrix_add(u, u, e1);
- /*
- * Calculate a scalar v = t^T y + e2 + mu.
- *
- * (t and y are column vectors, so t^T y is just a scalar - you
- * could think of it as the dot product t.y if you preferred.)
- *
- * Similarly to above, we multiply t and y which are in NTT
- * representation, and then perform an inverse NTT before adding
- * e2 and mu, which aren't.
- */
- mlkem_matrix_mul(v, t, y, true); /* regard t as transposed */
- mlkem_matrix_inverse_ntt(v);
- mlkem_matrix_add(v, v, e2);
- mlkem_matrix_add(v, v, mu);
- /*
- * The ciphertext consists of u and v, both encoded lossily, with
- * different numbers of bits retained per element.
- */
- char c[1568];
- mlkem_byte_encode_compressed(c, u->data, params->d_u, params->k);
- mlkem_byte_encode_compressed(c + 32 * params->k * params->d_u,
- v->data, params->d_v, 1);
- put_data(c_out, c, 32 * (params->k * params->d_u + params->d_v));
- /*
- * The output shared secret is just half of the hash of m (the
- * first half, which we didn't use for generating vectors above).
- */
- put_data(k_out, k, 32);
- smemclr(kr, sizeof(kr));
- mlkem_matrix_storage_free(storage);
- return true;
- }
- /*
- * Encapsulation function for live use, using the real RNG..
- */
- bool mlkem_encaps(BinarySink *ciphertext, BinarySink *kout,
- const mlkem_params *params, ptrlen ek)
- {
- unsigned char m[32];
- random_read(m, 32);
- bool success = mlkem_encaps_internal(ciphertext, kout, params, ek, m);
- smemclr(m, sizeof(m));
- return success;
- }
- /*
- * Decapsulation.
- */
- bool mlkem_decaps(BinarySink *k_out, const mlkem_params *params,
- ptrlen dk, ptrlen c)
- {
- /*
- * Validation: check the input strings are the right lengths.
- */
- if (dk.len != 768 * params->k + 96)
- return false;
- if (c.len != 32 * (params->d_u * params->k + params->d_v))
- return false;
- /*
- * Further validation: extract the encryption key from the middle
- * of dk, hash it, and check the hash matches.
- */
- const unsigned char *dkp = (const unsigned char *)dk.ptr;
- const unsigned char *cp = (const unsigned char *)c.ptr;
- ptrlen ek = make_ptrlen(dkp + 384*params->k, 384*params->k + 32);
- ssh_hash *h;
- unsigned char ekhash[32];
- h = ssh_hash_new(&ssh_sha3_256);
- put_datapl(h, ek);
- ssh_hash_final(h, ekhash);
- if (!smemeq(ekhash, dkp + 768*params->k + 32, 32))
- return false;
- mlkem_matrix_storage storage[1];
- mlkem_matrix u[1], v[1], s[1], w[1];
- mlkem_matrix_alloc(storage,
- u, params->k, 1,
- v, 1, 1,
- s, params->k, 1,
- w, 1, 1,
- (mlkem_matrix *)NULL);
- /*
- * Decode the vector u and the scalar v from the ciphertext. These
- * won't come out exactly the same as the originals, because of
- * the lossy compression.
- */
- mlkem_byte_decode_compressed(u->data, cp, params->d_u, params->k);
- mlkem_matrix_ntt(u);
- mlkem_byte_decode_compressed(v->data, cp + 32 * params->d_u * params->k,
- params->d_v, 1);
- /*
- * Decode the vector s from the private key.
- */
- mlkem_byte_decode_lossless(s->data, dkp, params->k);
- /*
- * Calculate the scalar w = v - s^T u.
- *
- * s and u are in NTT representation, but v isn't, so we
- * inverse-NTT the product before doing the subtraction. Therefore
- * w is not in NTT form either.
- */
- mlkem_matrix_mul(w, s, u, true); /* regard s as transposed */
- mlkem_matrix_inverse_ntt(w);
- mlkem_matrix_sub(w, v, w);
- /*
- * The aim is that this reconstructs something close enough to the
- * random vector mu that was made from the input secret m to
- * encapsulation, on the grounds that mu's polynomial coefficients
- * were very widely separated (on opposite sides of the cyclic
- * additive group of Z/qZ) and the noise added during encryption
- * all had _small_ polynomial coefficients.
- *
- * So we now re-encode this lossily at 1 bit per polynomial
- * coefficient, and hope that it reconstructs the actual string m.
- *
- * However, this _is_ only a hope! The ML-KEM decryption is not a
- * true mathematical inverse to encryption. With extreme bad luck,
- * the noise can add up enough that it flips a bit of m, and
- * everything fails. The parameters are chosen to make this happen
- * with negligible probability (the same kind of low probability
- * that makes you not worry about spontaneous hash collisions),
- * but it's not actually impossible.
- */
- unsigned char m[32];
- mlkem_byte_encode_compressed(m, w->data, 1, 1);
- /*
- * Now do the key _encapsulation_ again from scratch, using that
- * secret m as input, and check that it generates the identical
- * ciphertext. This should catch the above theoretical failure,
- * but also, it's a defence against malicious intervention in the
- * key exchange.
- *
- * This is also where we get the output secret k from: the
- * encapsulation function creates it as half of the hash of m.
- */
- unsigned char c_regen[1568], k[32];
- buffer_sink c_sink[1], k_sink[1];
- buffer_sink_init(c_sink, c_regen, sizeof(c_regen));
- buffer_sink_init(k_sink, k, sizeof(k));
- bool success = mlkem_encaps_internal(
- BinarySink_UPCAST(c_sink), BinarySink_UPCAST(k_sink), params, ek, m);
- /* If any application of ML-KEM uses a dk given to it by someone
- * else, then perhaps they have to worry about being given an
- * invalid one? But in our application we always expect this to
- * succeed, because dk is generated and used at the same end of
- * the SSH connection, within the same process, and nobody is
- * interfering with it. */
- assert(success && "We generated this dk ourselves, how can it be bad?");
- /*
- * If mlkem_encaps_internal returned success but delivered the
- * wrong ciphertext, that's a failure, but we must be careful not
- * to let the attacker know exactly what went wrong. So we
- * generate a plausible but wrong substitute output secret.
- *
- * k_reject is that secret; for constant-time reasons we generate
- * it unconditionally.
- */
- unsigned char k_reject[32];
- h = ssh_hash_new(&ssh_shake256_32bytes);
- put_data(h, dkp + 768 * params->k + 64, 32);
- put_datapl(h, c);
- ssh_hash_final(h, k_reject);
- /*
- * Now replace k with k_reject if the ciphertexts didn't match.
- */
- assert((void *)c_sink->out == (void *)(c_regen + c.len));
- unsigned match = smemeq(c.ptr, c_regen, c.len);
- unsigned mask = match - 1;
- for (size_t i = 0; i < 32; i++)
- k[i] ^= mask & (k[i] ^ k_reject[i]);
- /*
- * And we're done! Free everything and return whichever secret we
- * chose.
- */
- put_data(k_out, k, 32);
- mlkem_matrix_storage_free(storage);
- smemclr(m, sizeof(m));
- smemclr(c_regen, sizeof(c_regen));
- smemclr(k, sizeof(k));
- smemclr(k_reject, sizeof(k_reject));
- return true;
- }
- /* ----------------------------------------------------------------------
- * Implement the pq_kemalg vtable in terms of the above functions.
- */
- struct mlkem_dk {
- strbuf *encoded;
- pq_kem_dk dk;
- };
- static pq_kem_dk *mlkem_vt_keygen(const pq_kemalg *alg, BinarySink *ek)
- {
- struct mlkem_dk *mdk = snew(struct mlkem_dk);
- mdk->dk.vt = alg;
- mdk->encoded = strbuf_new_nm();
- mlkem_keygen(ek, BinarySink_UPCAST(mdk->encoded), alg->extra);
- return &mdk->dk;
- }
- static bool mlkem_vt_encaps(const pq_kemalg *alg, BinarySink *c, BinarySink *k,
- ptrlen ek)
- {
- return mlkem_encaps(c, k, alg->extra, ek);
- }
- static bool mlkem_vt_decaps(pq_kem_dk *dk, BinarySink *k, ptrlen c)
- {
- struct mlkem_dk *mdk = container_of(dk, struct mlkem_dk, dk);
- return mlkem_decaps(k, mdk->dk.vt->extra,
- ptrlen_from_strbuf(mdk->encoded), c);
- }
- static void mlkem_vt_free_dk(pq_kem_dk *dk)
- {
- struct mlkem_dk *mdk = container_of(dk, struct mlkem_dk, dk);
- strbuf_free(mdk->encoded);
- sfree(mdk);
- }
- const pq_kemalg ssh_mlkem512 = {
- .keygen = mlkem_vt_keygen,
- .encaps = mlkem_vt_encaps,
- .decaps = mlkem_vt_decaps,
- .free_dk = mlkem_vt_free_dk,
- .extra = &mlkem_params_512,
- .description = "ML-KEM-512",
- .ek_len = 384 * 2 + 32,
- .c_len = 32 * (10 * 2 + 4),
- };
- const pq_kemalg ssh_mlkem768 = {
- .keygen = mlkem_vt_keygen,
- .encaps = mlkem_vt_encaps,
- .decaps = mlkem_vt_decaps,
- .free_dk = mlkem_vt_free_dk,
- .extra = &mlkem_params_768,
- .description = "ML-KEM-768",
- .ek_len = 384 * 3 + 32,
- .c_len = 32 * (10 * 3 + 4),
- };
- const pq_kemalg ssh_mlkem1024 = {
- .keygen = mlkem_vt_keygen,
- .encaps = mlkem_vt_encaps,
- .decaps = mlkem_vt_decaps,
- .free_dk = mlkem_vt_free_dk,
- .extra = &mlkem_params_1024,
- .description = "ML-KEM-1024",
- .ek_len = 384 * 4 + 32,
- .c_len = 32 * (11 * 4 + 5),
- };
|