12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172 |
- /*
- * Basic arithmetic for elliptic curves, implementing ecc.h.
- */
- #include <assert.h>
- #include "ssh.h"
- #include "mpint.h"
- #include "ecc.h"
- /* ----------------------------------------------------------------------
- * Weierstrass curves.
- */
- struct WeierstrassPoint {
- /*
- * Internally, we represent a point using 'Jacobian coordinates',
- * which are three values X,Y,Z whose relation to the affine
- * coordinates x,y is that x = X/Z^2 and y = Y/Z^3.
- *
- * This allows us to do most of our calculations without having to
- * take an inverse mod p: every time the obvious affine formulae
- * would need you to divide by something, you instead multiply it
- * into the 'denominator' coordinate Z. You only have to actually
- * take the inverse of Z when you need to get the affine
- * coordinates back out, which means you do it once after your
- * entire computation instead of at every intermediate step.
- *
- * The point at infinity is represented by setting all three
- * coordinates to zero.
- *
- * These values are also stored in the Montgomery-multiplication
- * transformed representation.
- */
- mp_int *X, *Y, *Z;
- WeierstrassCurve *wc;
- };
- struct WeierstrassCurve {
- /* Prime modulus of the finite field. */
- mp_int *p;
- /* Persistent Montgomery context for doing arithmetic mod p. */
- MontyContext *mc;
- /* Modsqrt context for point decompression. NULL if this curve was
- * constructed without providing nonsquare_mod_p. */
- ModsqrtContext *sc;
- /* Parameters of the curve, in Montgomery-multiplication
- * transformed form. */
- mp_int *a, *b;
- };
- WeierstrassCurve *ecc_weierstrass_curve(
- mp_int *p, mp_int *a, mp_int *b, mp_int *nonsquare_mod_p)
- {
- WeierstrassCurve *wc = snew(WeierstrassCurve);
- wc->p = mp_copy(p);
- wc->mc = monty_new(p);
- wc->a = monty_import(wc->mc, a);
- wc->b = monty_import(wc->mc, b);
- if (nonsquare_mod_p)
- wc->sc = modsqrt_new(p, nonsquare_mod_p);
- else
- wc->sc = NULL;
- return wc;
- }
- void ecc_weierstrass_curve_free(WeierstrassCurve *wc)
- {
- mp_free(wc->p);
- mp_free(wc->a);
- mp_free(wc->b);
- monty_free(wc->mc);
- if (wc->sc)
- modsqrt_free(wc->sc);
- sfree(wc);
- }
- static WeierstrassPoint *ecc_weierstrass_point_new_empty(WeierstrassCurve *wc)
- {
- WeierstrassPoint *wp = snew(WeierstrassPoint);
- wp->wc = wc;
- wp->X = wp->Y = wp->Z = NULL;
- return wp;
- }
- static WeierstrassPoint *ecc_weierstrass_point_new_imported(
- WeierstrassCurve *wc, mp_int *monty_x, mp_int *monty_y)
- {
- WeierstrassPoint *wp = ecc_weierstrass_point_new_empty(wc);
- wp->X = monty_x;
- wp->Y = monty_y;
- wp->Z = mp_copy(monty_identity(wc->mc));
- return wp;
- }
- WeierstrassPoint *ecc_weierstrass_point_new(
- WeierstrassCurve *wc, mp_int *x, mp_int *y)
- {
- return ecc_weierstrass_point_new_imported(
- wc, monty_import(wc->mc, x), monty_import(wc->mc, y));
- }
- WeierstrassPoint *ecc_weierstrass_point_new_identity(WeierstrassCurve *wc)
- {
- WeierstrassPoint *wp = ecc_weierstrass_point_new_empty(wc);
- size_t bits = mp_max_bits(wc->p);
- wp->X = mp_new(bits);
- wp->Y = mp_new(bits);
- wp->Z = mp_new(bits);
- return wp;
- }
- void ecc_weierstrass_point_copy_into(
- WeierstrassPoint *dest, WeierstrassPoint *src)
- {
- mp_copy_into(dest->X, src->X);
- mp_copy_into(dest->Y, src->Y);
- mp_copy_into(dest->Z, src->Z);
- }
- WeierstrassPoint *ecc_weierstrass_point_copy(WeierstrassPoint *orig)
- {
- WeierstrassPoint *wp = ecc_weierstrass_point_new_empty(orig->wc);
- wp->X = mp_copy(orig->X);
- wp->Y = mp_copy(orig->Y);
- wp->Z = mp_copy(orig->Z);
- return wp;
- }
- void ecc_weierstrass_point_free(WeierstrassPoint *wp)
- {
- mp_free(wp->X);
- mp_free(wp->Y);
- mp_free(wp->Z);
- smemclr(wp, sizeof(*wp));
- sfree(wp);
- }
- WeierstrassPoint *ecc_weierstrass_point_new_from_x(
- WeierstrassCurve *wc, mp_int *xorig, unsigned desired_y_parity)
- {
- assert(wc->sc);
- /*
- * The curve equation is y^2 = x^3 + ax + b, which is already
- * conveniently in a form where we can compute the RHS and take
- * the square root of it to get y.
- */
- unsigned success;
- mp_int *x = monty_import(wc->mc, xorig);
- /*
- * Compute the RHS of the curve equation. We don't need to take
- * account of z here, because we're constructing the point from
- * scratch. So it really is just x^3 + ax + b.
- */
- mp_int *x2 = monty_mul(wc->mc, x, x);
- mp_int *x2_plus_a = monty_add(wc->mc, x2, wc->a);
- mp_int *x3_plus_ax = monty_mul(wc->mc, x2_plus_a, x);
- mp_int *rhs = monty_add(wc->mc, x3_plus_ax, wc->b);
- mp_free(x2);
- mp_free(x2_plus_a);
- mp_free(x3_plus_ax);
- mp_int *y = monty_modsqrt(wc->sc, rhs, &success);
- mp_free(rhs);
- if (!success) {
- /* Failure! x^3+ax+b worked out to be a number that has no
- * square root mod p. In this situation there's no point in
- * trying to be time-constant, since the protocol sequence is
- * going to diverge anyway when we complain to whoever gave us
- * this bogus value. */
- mp_free(x);
- mp_free(y);
- return NULL;
- }
- /*
- * Choose whichever of y and p-y has the specified parity (of its
- * lowest positive residue mod p).
- */
- mp_int *tmp = monty_export(wc->mc, y);
- unsigned flip = (mp_get_bit(tmp, 0) ^ desired_y_parity) & 1;
- mp_sub_into(tmp, wc->p, y);
- mp_select_into(y, y, tmp, flip);
- mp_free(tmp);
- return ecc_weierstrass_point_new_imported(wc, x, y);
- }
- static void ecc_weierstrass_cond_overwrite(
- WeierstrassPoint *dest, WeierstrassPoint *src, unsigned overwrite)
- {
- mp_select_into(dest->X, dest->X, src->X, overwrite);
- mp_select_into(dest->Y, dest->Y, src->Y, overwrite);
- mp_select_into(dest->Z, dest->Z, src->Z, overwrite);
- }
- static void ecc_weierstrass_cond_swap(
- WeierstrassPoint *P, WeierstrassPoint *Q, unsigned swap)
- {
- mp_cond_swap(P->X, Q->X, swap);
- mp_cond_swap(P->Y, Q->Y, swap);
- mp_cond_swap(P->Z, Q->Z, swap);
- }
- /*
- * Shared code between all three of the basic arithmetic functions:
- * once we've determined the slope of the line that we're intersecting
- * the curve with, this takes care of finding the coordinates of the
- * third intersection point (given the two input x-coordinates and one
- * of the y-coords) and negating it to generate the output.
- */
- static inline void ecc_weierstrass_epilogue(
- mp_int *Px, mp_int *Qx, mp_int *Py, mp_int *common_Z,
- mp_int *lambda_n, mp_int *lambda_d, WeierstrassPoint *out)
- {
- WeierstrassCurve *wc = out->wc;
- /* Powers of the numerator and denominator of the slope lambda */
- mp_int *lambda_n2 = monty_mul(wc->mc, lambda_n, lambda_n);
- mp_int *lambda_d2 = monty_mul(wc->mc, lambda_d, lambda_d);
- mp_int *lambda_d3 = monty_mul(wc->mc, lambda_d, lambda_d2);
- /* Make the output x-coordinate */
- mp_int *xsum = monty_add(wc->mc, Px, Qx);
- mp_int *lambda_d2_xsum = monty_mul(wc->mc, lambda_d2, xsum);
- out->X = monty_sub(wc->mc, lambda_n2, lambda_d2_xsum);
- /* Make the output y-coordinate */
- mp_int *lambda_d2_Px = monty_mul(wc->mc, lambda_d2, Px);
- mp_int *xdiff = monty_sub(wc->mc, lambda_d2_Px, out->X);
- mp_int *lambda_n_xdiff = monty_mul(wc->mc, lambda_n, xdiff);
- mp_int *lambda_d3_Py = monty_mul(wc->mc, lambda_d3, Py);
- out->Y = monty_sub(wc->mc, lambda_n_xdiff, lambda_d3_Py);
- /* Make the output z-coordinate */
- out->Z = monty_mul(wc->mc, common_Z, lambda_d);
- mp_free(lambda_n2);
- mp_free(lambda_d2);
- mp_free(lambda_d3);
- mp_free(xsum);
- mp_free(xdiff);
- mp_free(lambda_d2_xsum);
- mp_free(lambda_n_xdiff);
- mp_free(lambda_d2_Px);
- mp_free(lambda_d3_Py);
- }
- /*
- * Shared code between add and add_general: put the two input points
- * over a common denominator, and determine the slope lambda of the
- * line through both of them. If the points have the same
- * x-coordinate, then the slope will be returned with a zero
- * denominator.
- */
- static inline void ecc_weierstrass_add_prologue(
- WeierstrassPoint *P, WeierstrassPoint *Q,
- mp_int **Px, mp_int **Py, mp_int **Qx, mp_int **denom,
- mp_int **lambda_n, mp_int **lambda_d)
- {
- WeierstrassCurve *wc = P->wc;
- /* Powers of the points' denominators */
- mp_int *Pz2 = monty_mul(wc->mc, P->Z, P->Z);
- mp_int *Pz3 = monty_mul(wc->mc, Pz2, P->Z);
- mp_int *Qz2 = monty_mul(wc->mc, Q->Z, Q->Z);
- mp_int *Qz3 = monty_mul(wc->mc, Qz2, Q->Z);
- /* Points' x,y coordinates scaled by the other one's denominator
- * (raised to the appropriate power) */
- *Px = monty_mul(wc->mc, P->X, Qz2);
- *Py = monty_mul(wc->mc, P->Y, Qz3);
- *Qx = monty_mul(wc->mc, Q->X, Pz2);
- mp_int *Qy = monty_mul(wc->mc, Q->Y, Pz3);
- /* Common denominator */
- *denom = monty_mul(wc->mc, P->Z, Q->Z);
- /* Slope of the line through the two points, if P != Q */
- *lambda_n = monty_sub(wc->mc, Qy, *Py);
- *lambda_d = monty_sub(wc->mc, *Qx, *Px);
- mp_free(Pz2);
- mp_free(Pz3);
- mp_free(Qz2);
- mp_free(Qz3);
- mp_free(Qy);
- }
- WeierstrassPoint *ecc_weierstrass_add(WeierstrassPoint *P, WeierstrassPoint *Q)
- {
- WeierstrassCurve *wc = P->wc;
- assert(Q->wc == wc);
- WeierstrassPoint *S = ecc_weierstrass_point_new_empty(wc);
- mp_int *Px, *Py, *Qx, *denom, *lambda_n, *lambda_d;
- ecc_weierstrass_add_prologue(
- P, Q, &Px, &Py, &Qx, &denom, &lambda_n, &lambda_d);
- /* Never expect to have received two mutually inverse inputs, or
- * two identical ones (which would make this a doubling). In other
- * words, the two input x-coordinates (after putting over a common
- * denominator) should never have been equal. */
- assert(!mp_eq_integer(lambda_n, 0));
- /* Now go to the common epilogue code. */
- ecc_weierstrass_epilogue(Px, Qx, Py, denom, lambda_n, lambda_d, S);
- mp_free(Px);
- mp_free(Py);
- mp_free(Qx);
- mp_free(denom);
- mp_free(lambda_n);
- mp_free(lambda_d);
- return S;
- }
- /*
- * Code to determine the slope of the line you need to intersect with
- * the curve in the case where you're adding a point to itself. In
- * this situation you can't just say "the line through both input
- * points" because that's under-determined; instead, you have to take
- * the _tangent_ to the curve at the given point, by differentiating
- * the curve equation y^2=x^3+ax+b to get 2y dy/dx = 3x^2+a.
- */
- static inline void ecc_weierstrass_tangent_slope(
- WeierstrassPoint *P, mp_int **lambda_n, mp_int **lambda_d)
- {
- WeierstrassCurve *wc = P->wc;
- mp_int *X2 = monty_mul(wc->mc, P->X, P->X);
- mp_int *twoX2 = monty_add(wc->mc, X2, X2);
- mp_int *threeX2 = monty_add(wc->mc, twoX2, X2);
- mp_int *Z2 = monty_mul(wc->mc, P->Z, P->Z);
- mp_int *Z4 = monty_mul(wc->mc, Z2, Z2);
- mp_int *aZ4 = monty_mul(wc->mc, wc->a, Z4);
- *lambda_n = monty_add(wc->mc, threeX2, aZ4);
- *lambda_d = monty_add(wc->mc, P->Y, P->Y);
- mp_free(X2);
- mp_free(twoX2);
- mp_free(threeX2);
- mp_free(Z2);
- mp_free(Z4);
- mp_free(aZ4);
- }
- WeierstrassPoint *ecc_weierstrass_double(WeierstrassPoint *P)
- {
- WeierstrassCurve *wc = P->wc;
- WeierstrassPoint *D = ecc_weierstrass_point_new_empty(wc);
- mp_int *lambda_n, *lambda_d;
- ecc_weierstrass_tangent_slope(P, &lambda_n, &lambda_d);
- ecc_weierstrass_epilogue(P->X, P->X, P->Y, P->Z, lambda_n, lambda_d, D);
- mp_free(lambda_n);
- mp_free(lambda_d);
- return D;
- }
- static inline void ecc_weierstrass_select_into(
- WeierstrassPoint *dest, WeierstrassPoint *P, WeierstrassPoint *Q,
- unsigned choose_Q)
- {
- mp_select_into(dest->X, P->X, Q->X, choose_Q);
- mp_select_into(dest->Y, P->Y, Q->Y, choose_Q);
- mp_select_into(dest->Z, P->Z, Q->Z, choose_Q);
- }
- WeierstrassPoint *ecc_weierstrass_add_general(
- WeierstrassPoint *P, WeierstrassPoint *Q)
- {
- WeierstrassCurve *wc = P->wc;
- assert(Q->wc == wc);
- WeierstrassPoint *S = ecc_weierstrass_point_new_empty(wc);
- /* Parameters for the epilogue, and slope of the line if P != Q */
- mp_int *Px, *Py, *Qx, *denom, *lambda_n, *lambda_d;
- ecc_weierstrass_add_prologue(
- P, Q, &Px, &Py, &Qx, &denom, &lambda_n, &lambda_d);
- /* Slope if P == Q */
- mp_int *lambda_n_tangent, *lambda_d_tangent;
- ecc_weierstrass_tangent_slope(P, &lambda_n_tangent, &lambda_d_tangent);
- /* Select between those slopes depending on whether P == Q */
- unsigned same_x_coord = mp_eq_integer(lambda_d, 0);
- unsigned same_y_coord = mp_eq_integer(lambda_n, 0);
- unsigned equality = same_x_coord & same_y_coord;
- mp_select_into(lambda_n, lambda_n, lambda_n_tangent, equality);
- mp_select_into(lambda_d, lambda_d, lambda_d_tangent, equality);
- /* Now go to the common code between addition and doubling */
- ecc_weierstrass_epilogue(Px, Qx, Py, denom, lambda_n, lambda_d, S);
- /* Check for the input identity cases, and overwrite the output if
- * necessary. */
- ecc_weierstrass_select_into(S, S, Q, mp_eq_integer(P->Z, 0));
- ecc_weierstrass_select_into(S, S, P, mp_eq_integer(Q->Z, 0));
- /*
- * In the case where P == -Q and so the output is the identity,
- * we'll have calculated lambda_d = 0 and so the output will have
- * z==0 already. Detect that and use it to normalise the other two
- * coordinates to zero.
- */
- unsigned output_id = mp_eq_integer(S->Z, 0);
- mp_cond_clear(S->X, output_id);
- mp_cond_clear(S->Y, output_id);
- mp_free(Px);
- mp_free(Py);
- mp_free(Qx);
- mp_free(denom);
- mp_free(lambda_n);
- mp_free(lambda_d);
- mp_free(lambda_n_tangent);
- mp_free(lambda_d_tangent);
- return S;
- }
- WeierstrassPoint *ecc_weierstrass_multiply(WeierstrassPoint *B, mp_int *n)
- {
- WeierstrassPoint *two_B = ecc_weierstrass_double(B);
- WeierstrassPoint *k_B = ecc_weierstrass_point_copy(B);
- WeierstrassPoint *kplus1_B = ecc_weierstrass_point_copy(two_B);
- /*
- * This multiply routine more or less follows the shape of the
- * 'Montgomery ladder' technique that you have to use under the
- * extra constraint on addition in Montgomery curves, because it
- * was fresh in my mind and easier to just do it the same way. See
- * the comment in ecc_montgomery_multiply.
- */
- unsigned not_started_yet = 1;
- for (size_t bitindex = mp_max_bits(n); bitindex-- > 0 ;) {
- unsigned nbit = mp_get_bit(n, bitindex);
- WeierstrassPoint *sum = ecc_weierstrass_add(k_B, kplus1_B);
- ecc_weierstrass_cond_swap(k_B, kplus1_B, nbit);
- WeierstrassPoint *other = ecc_weierstrass_double(k_B);
- ecc_weierstrass_point_free(k_B);
- ecc_weierstrass_point_free(kplus1_B);
- k_B = other;
- kplus1_B = sum;
- ecc_weierstrass_cond_swap(k_B, kplus1_B, nbit);
- ecc_weierstrass_cond_overwrite(k_B, B, not_started_yet);
- ecc_weierstrass_cond_overwrite(kplus1_B, two_B, not_started_yet);
- not_started_yet &= ~nbit;
- }
- ecc_weierstrass_point_free(two_B);
- ecc_weierstrass_point_free(kplus1_B);
- return k_B;
- }
- unsigned ecc_weierstrass_is_identity(WeierstrassPoint *wp)
- {
- return mp_eq_integer(wp->Z, 0);
- }
- /*
- * Normalise a point by scaling its Jacobian coordinates so that Z=1.
- * This doesn't change what point is represented by the triple, but it
- * means the affine x,y can now be easily recovered from X and Y.
- */
- static void ecc_weierstrass_normalise(WeierstrassPoint *wp)
- {
- WeierstrassCurve *wc = wp->wc;
- mp_int *zinv = monty_invert(wc->mc, wp->Z);
- mp_int *zinv2 = monty_mul(wc->mc, zinv, zinv);
- mp_int *zinv3 = monty_mul(wc->mc, zinv2, zinv);
- monty_mul_into(wc->mc, wp->X, wp->X, zinv2);
- monty_mul_into(wc->mc, wp->Y, wp->Y, zinv3);
- monty_mul_into(wc->mc, wp->Z, wp->Z, zinv);
- mp_free(zinv);
- mp_free(zinv2);
- mp_free(zinv3);
- }
- void ecc_weierstrass_get_affine(
- WeierstrassPoint *wp, mp_int **x, mp_int **y)
- {
- WeierstrassCurve *wc = wp->wc;
- ecc_weierstrass_normalise(wp);
- if (x)
- *x = monty_export(wc->mc, wp->X);
- if (y)
- *y = monty_export(wc->mc, wp->Y);
- }
- unsigned ecc_weierstrass_point_valid(WeierstrassPoint *P)
- {
- WeierstrassCurve *wc = P->wc;
- /*
- * The projective version of the curve equation is
- * Y^2 = X^3 + a X Z^4 + b Z^6
- */
- mp_int *lhs = monty_mul(P->wc->mc, P->Y, P->Y);
- mp_int *x2 = monty_mul(wc->mc, P->X, P->X);
- mp_int *x3 = monty_mul(wc->mc, x2, P->X);
- mp_int *z2 = monty_mul(wc->mc, P->Z, P->Z);
- mp_int *z4 = monty_mul(wc->mc, z2, z2);
- mp_int *az4 = monty_mul(wc->mc, wc->a, z4);
- mp_int *axz4 = monty_mul(wc->mc, az4, P->X);
- mp_int *x3_plus_axz4 = monty_add(wc->mc, x3, axz4);
- mp_int *z6 = monty_mul(wc->mc, z2, z4);
- mp_int *bz6 = monty_mul(wc->mc, wc->b, z6);
- mp_int *rhs = monty_add(wc->mc, x3_plus_axz4, bz6);
- unsigned valid = mp_cmp_eq(lhs, rhs);
- mp_free(lhs);
- mp_free(x2);
- mp_free(x3);
- mp_free(z2);
- mp_free(z4);
- mp_free(az4);
- mp_free(axz4);
- mp_free(x3_plus_axz4);
- mp_free(z6);
- mp_free(bz6);
- mp_free(rhs);
- return valid;
- }
- /* ----------------------------------------------------------------------
- * Montgomery curves.
- */
- struct MontgomeryPoint {
- /* XZ coordinates. These represent the affine x coordinate by the
- * relationship x = X/Z. */
- mp_int *X, *Z;
- MontgomeryCurve *mc;
- };
- struct MontgomeryCurve {
- /* Prime modulus of the finite field. */
- mp_int *p;
- /* Montgomery context for arithmetic mod p. */
- MontyContext *mc;
- /* Parameters of the curve, in Montgomery-multiplication
- * transformed form. */
- mp_int *a, *b;
- /* (a+2)/4, also in Montgomery-multiplication form. */
- mp_int *aplus2over4;
- };
- MontgomeryCurve *ecc_montgomery_curve(
- mp_int *p, mp_int *a, mp_int *b)
- {
- MontgomeryCurve *mc = snew(MontgomeryCurve);
- mc->p = mp_copy(p);
- mc->mc = monty_new(p);
- mc->a = monty_import(mc->mc, a);
- mc->b = monty_import(mc->mc, b);
- mp_int *four = mp_from_integer(4);
- mp_int *fourinverse = mp_invert(four, mc->p);
- mp_int *aplus2 = mp_copy(a);
- mp_add_integer_into(aplus2, aplus2, 2);
- mp_int *aplus2over4 = mp_modmul(aplus2, fourinverse, mc->p);
- mc->aplus2over4 = monty_import(mc->mc, aplus2over4);
- mp_free(four);
- mp_free(fourinverse);
- mp_free(aplus2);
- mp_free(aplus2over4);
- return mc;
- }
- void ecc_montgomery_curve_free(MontgomeryCurve *mc)
- {
- mp_free(mc->p);
- mp_free(mc->a);
- mp_free(mc->b);
- mp_free(mc->aplus2over4);
- monty_free(mc->mc);
- sfree(mc);
- }
- static MontgomeryPoint *ecc_montgomery_point_new_empty(MontgomeryCurve *mc)
- {
- MontgomeryPoint *mp = snew(MontgomeryPoint);
- mp->mc = mc;
- mp->X = mp->Z = NULL;
- return mp;
- }
- MontgomeryPoint *ecc_montgomery_point_new(MontgomeryCurve *mc, mp_int *x)
- {
- MontgomeryPoint *mp = ecc_montgomery_point_new_empty(mc);
- mp->X = monty_import(mc->mc, x);
- mp->Z = mp_copy(monty_identity(mc->mc));
- return mp;
- }
- void ecc_montgomery_point_copy_into(
- MontgomeryPoint *dest, MontgomeryPoint *src)
- {
- mp_copy_into(dest->X, src->X);
- mp_copy_into(dest->Z, src->Z);
- }
- MontgomeryPoint *ecc_montgomery_point_copy(MontgomeryPoint *orig)
- {
- MontgomeryPoint *mp = ecc_montgomery_point_new_empty(orig->mc);
- mp->X = mp_copy(orig->X);
- mp->Z = mp_copy(orig->Z);
- return mp;
- }
- void ecc_montgomery_point_free(MontgomeryPoint *mp)
- {
- mp_free(mp->X);
- mp_free(mp->Z);
- smemclr(mp, sizeof(*mp));
- sfree(mp);
- }
- static void ecc_montgomery_cond_overwrite(
- MontgomeryPoint *dest, MontgomeryPoint *src, unsigned overwrite)
- {
- mp_select_into(dest->X, dest->X, src->X, overwrite);
- mp_select_into(dest->Z, dest->Z, src->Z, overwrite);
- }
- static void ecc_montgomery_cond_swap(
- MontgomeryPoint *P, MontgomeryPoint *Q, unsigned swap)
- {
- mp_cond_swap(P->X, Q->X, swap);
- mp_cond_swap(P->Z, Q->Z, swap);
- }
- MontgomeryPoint *ecc_montgomery_diff_add(
- MontgomeryPoint *P, MontgomeryPoint *Q, MontgomeryPoint *PminusQ)
- {
- MontgomeryCurve *mc = P->mc;
- assert(Q->mc == mc);
- assert(PminusQ->mc == mc);
- /*
- * Differential addition is achieved using the following formula
- * that relates the affine x-coordinates of P, Q, P+Q and P-Q:
- *
- * x(P+Q) x(P-Q) (x(Q)-x(P))^2 = (x(P)x(Q) - 1)^2
- *
- * As with the Weierstrass coordinates, the code below transforms
- * that affine relation into a projective one to avoid having to
- * do a division during the main arithmetic.
- */
- MontgomeryPoint *S = ecc_montgomery_point_new_empty(mc);
- mp_int *Px_m_Pz = monty_sub(mc->mc, P->X, P->Z);
- mp_int *Px_p_Pz = monty_add(mc->mc, P->X, P->Z);
- mp_int *Qx_m_Qz = monty_sub(mc->mc, Q->X, Q->Z);
- mp_int *Qx_p_Qz = monty_add(mc->mc, Q->X, Q->Z);
- mp_int *PmQp = monty_mul(mc->mc, Px_m_Pz, Qx_p_Qz);
- mp_int *PpQm = monty_mul(mc->mc, Px_p_Pz, Qx_m_Qz);
- mp_int *Xpre = monty_add(mc->mc, PmQp, PpQm);
- mp_int *Zpre = monty_sub(mc->mc, PmQp, PpQm);
- mp_int *Xpre2 = monty_mul(mc->mc, Xpre, Xpre);
- mp_int *Zpre2 = monty_mul(mc->mc, Zpre, Zpre);
- S->X = monty_mul(mc->mc, Xpre2, PminusQ->Z);
- S->Z = monty_mul(mc->mc, Zpre2, PminusQ->X);
- mp_free(Px_m_Pz);
- mp_free(Px_p_Pz);
- mp_free(Qx_m_Qz);
- mp_free(Qx_p_Qz);
- mp_free(PmQp);
- mp_free(PpQm);
- mp_free(Xpre);
- mp_free(Zpre);
- mp_free(Xpre2);
- mp_free(Zpre2);
- return S;
- }
- MontgomeryPoint *ecc_montgomery_double(MontgomeryPoint *P)
- {
- MontgomeryCurve *mc = P->mc;
- MontgomeryPoint *D = ecc_montgomery_point_new_empty(mc);
- /*
- * To double a point in affine coordinates, in principle you can
- * use the same technique as for Weierstrass: differentiate the
- * curve equation to get the tangent line at the input point, use
- * that to get an expression for y which you substitute back into
- * the curve equation, and subtract the known two roots (in this
- * case both the same) from the x^2 coefficient of the resulting
- * cubic.
- *
- * In this case, we don't have an input y-coordinate, so you have
- * to do a bit of extra transformation to find a formula that can
- * work without it. The tangent formula is (3x^2 + 2ax + 1)/(2y),
- * and when that appears in the final formula it will be squared -
- * so we can substitute the y^2 in the denominator for the RHS of
- * the curve equation. Put together, that gives
- *
- * x_out = (x+1)^2 (x-1)^2 / 4(x^3+ax^2+x)
- *
- * and, as usual, the code below transforms that into projective
- * form to avoid the division.
- */
- mp_int *Px_m_Pz = monty_sub(mc->mc, P->X, P->Z);
- mp_int *Px_p_Pz = monty_add(mc->mc, P->X, P->Z);
- mp_int *Px_m_Pz_2 = monty_mul(mc->mc, Px_m_Pz, Px_m_Pz);
- mp_int *Px_p_Pz_2 = monty_mul(mc->mc, Px_p_Pz, Px_p_Pz);
- D->X = monty_mul(mc->mc, Px_m_Pz_2, Px_p_Pz_2);
- mp_int *XZ = monty_mul(mc->mc, P->X, P->Z);
- mp_int *twoXZ = monty_add(mc->mc, XZ, XZ);
- mp_int *fourXZ = monty_add(mc->mc, twoXZ, twoXZ);
- mp_int *fourXZ_scaled = monty_mul(mc->mc, fourXZ, mc->aplus2over4);
- mp_int *Zpre = monty_add(mc->mc, Px_m_Pz_2, fourXZ_scaled);
- D->Z = monty_mul(mc->mc, fourXZ, Zpre);
- mp_free(Px_m_Pz);
- mp_free(Px_p_Pz);
- mp_free(Px_m_Pz_2);
- mp_free(Px_p_Pz_2);
- mp_free(XZ);
- mp_free(twoXZ);
- mp_free(fourXZ);
- mp_free(fourXZ_scaled);
- mp_free(Zpre);
- return D;
- }
- static void ecc_montgomery_normalise(MontgomeryPoint *mp)
- {
- MontgomeryCurve *mc = mp->mc;
- mp_int *zinv = monty_invert(mc->mc, mp->Z);
- monty_mul_into(mc->mc, mp->X, mp->X, zinv);
- monty_mul_into(mc->mc, mp->Z, mp->Z, zinv);
- mp_free(zinv);
- }
- MontgomeryPoint *ecc_montgomery_multiply(MontgomeryPoint *B, mp_int *n)
- {
- /*
- * 'Montgomery ladder' technique, to compute an arbitrary integer
- * multiple of B under the constraint that you can only add two
- * unequal points if you also know their difference.
- *
- * The setup is that you maintain two curve points one of which is
- * always the other one plus B. Call them kB and (k+1)B, where k
- * is some integer that evolves as we go along. We begin by
- * doubling the input B, to initialise those points to B and 2B,
- * so that k=1.
- *
- * At each stage, we add kB and (k+1)B together - which we can do
- * under the differential-addition constraint because we know
- * their difference is always just B - to give us (2k+1)B. Then we
- * double one of kB or (k+1)B, and depending on which one we
- * choose, we end up with (2k)B or (2k+2)B. Either way, that
- * differs by B from the other value we've just computed. So in
- * each iteration, we do one diff-add and one doubling, plus a
- * couple of conditional swaps to choose which value we double and
- * which way round we put the output points, and the effect is to
- * replace k with either 2k or 2k+1, which we choose based on the
- * appropriate bit of the desired exponent.
- *
- * This routine doesn't assume we know the exact location of the
- * topmost set bit of the exponent. So to maintain constant time
- * it does an iteration for every _potential_ bit, starting from
- * the top downwards; after each iteration in which we haven't
- * seen a set exponent bit yet, we just overwrite the two points
- * with B and 2B again,
- */
- MontgomeryPoint *two_B = ecc_montgomery_double(B);
- MontgomeryPoint *k_B = ecc_montgomery_point_copy(B);
- MontgomeryPoint *kplus1_B = ecc_montgomery_point_copy(two_B);
- unsigned not_started_yet = 1;
- for (size_t bitindex = mp_max_bits(n); bitindex-- > 0 ;) {
- unsigned nbit = mp_get_bit(n, bitindex);
- MontgomeryPoint *sum = ecc_montgomery_diff_add(k_B, kplus1_B, B);
- ecc_montgomery_cond_swap(k_B, kplus1_B, nbit);
- MontgomeryPoint *other = ecc_montgomery_double(k_B);
- ecc_montgomery_point_free(k_B);
- ecc_montgomery_point_free(kplus1_B);
- k_B = other;
- kplus1_B = sum;
- ecc_montgomery_cond_swap(k_B, kplus1_B, nbit);
- ecc_montgomery_cond_overwrite(k_B, B, not_started_yet);
- ecc_montgomery_cond_overwrite(kplus1_B, two_B, not_started_yet);
- not_started_yet &= ~nbit;
- }
- ecc_montgomery_point_free(two_B);
- ecc_montgomery_point_free(kplus1_B);
- return k_B;
- }
- void ecc_montgomery_get_affine(MontgomeryPoint *mp, mp_int **x)
- {
- MontgomeryCurve *mc = mp->mc;
- ecc_montgomery_normalise(mp);
- if (x)
- *x = monty_export(mc->mc, mp->X);
- }
- unsigned ecc_montgomery_is_identity(MontgomeryPoint *mp)
- {
- return mp_eq_integer(mp->Z, 0);
- }
- /* ----------------------------------------------------------------------
- * Twisted Edwards curves.
- */
- struct EdwardsPoint {
- /*
- * We represent an Edwards curve point in 'extended coordinates'.
- * There's more than one coordinate system going by that name,
- * unfortunately. These ones have the semantics that X,Y,Z are
- * ordinary projective coordinates (so x=X/Z and y=Y/Z), but also,
- * we store the extra value T = xyZ = XY/Z.
- */
- mp_int *X, *Y, *Z, *T;
- EdwardsCurve *ec;
- };
- struct EdwardsCurve {
- /* Prime modulus of the finite field. */
- mp_int *p;
- /* Montgomery context for arithmetic mod p. */
- MontyContext *mc;
- /* Modsqrt context for point decompression. */
- ModsqrtContext *sc;
- /* Parameters of the curve, in Montgomery-multiplication
- * transformed form. */
- mp_int *d, *a;
- };
- EdwardsCurve *ecc_edwards_curve(mp_int *p, mp_int *d, mp_int *a,
- mp_int *nonsquare_mod_p)
- {
- EdwardsCurve *ec = snew(EdwardsCurve);
- ec->p = mp_copy(p);
- ec->mc = monty_new(p);
- ec->d = monty_import(ec->mc, d);
- ec->a = monty_import(ec->mc, a);
- if (nonsquare_mod_p)
- ec->sc = modsqrt_new(p, nonsquare_mod_p);
- else
- ec->sc = NULL;
- return ec;
- }
- void ecc_edwards_curve_free(EdwardsCurve *ec)
- {
- mp_free(ec->p);
- mp_free(ec->d);
- mp_free(ec->a);
- monty_free(ec->mc);
- if (ec->sc)
- modsqrt_free(ec->sc);
- sfree(ec);
- }
- static EdwardsPoint *ecc_edwards_point_new_empty(EdwardsCurve *ec)
- {
- EdwardsPoint *ep = snew(EdwardsPoint);
- ep->ec = ec;
- ep->X = ep->Y = ep->Z = ep->T = NULL;
- return ep;
- }
- static EdwardsPoint *ecc_edwards_point_new_imported(
- EdwardsCurve *ec, mp_int *monty_x, mp_int *monty_y)
- {
- EdwardsPoint *ep = ecc_edwards_point_new_empty(ec);
- ep->X = monty_x;
- ep->Y = monty_y;
- ep->T = monty_mul(ec->mc, ep->X, ep->Y);
- ep->Z = mp_copy(monty_identity(ec->mc));
- return ep;
- }
- EdwardsPoint *ecc_edwards_point_new(
- EdwardsCurve *ec, mp_int *x, mp_int *y)
- {
- return ecc_edwards_point_new_imported(
- ec, monty_import(ec->mc, x), monty_import(ec->mc, y));
- }
- void ecc_edwards_point_copy_into(EdwardsPoint *dest, EdwardsPoint *src)
- {
- mp_copy_into(dest->X, src->X);
- mp_copy_into(dest->Y, src->Y);
- mp_copy_into(dest->Z, src->Z);
- mp_copy_into(dest->T, src->T);
- }
- EdwardsPoint *ecc_edwards_point_copy(EdwardsPoint *orig)
- {
- EdwardsPoint *ep = ecc_edwards_point_new_empty(orig->ec);
- ep->X = mp_copy(orig->X);
- ep->Y = mp_copy(orig->Y);
- ep->Z = mp_copy(orig->Z);
- ep->T = mp_copy(orig->T);
- return ep;
- }
- void ecc_edwards_point_free(EdwardsPoint *ep)
- {
- mp_free(ep->X);
- mp_free(ep->Y);
- mp_free(ep->Z);
- mp_free(ep->T);
- smemclr(ep, sizeof(*ep));
- sfree(ep);
- }
- EdwardsPoint *ecc_edwards_point_new_from_y(
- EdwardsCurve *ec, mp_int *yorig, unsigned desired_x_parity)
- {
- assert(ec->sc);
- /*
- * The curve equation is ax^2 + y^2 = 1 + dx^2y^2, which
- * rearranges to x^2(dy^2-a) = y^2-1. So we compute
- * (y^2-1)/(dy^2-a) and take its square root.
- */
- unsigned success;
- mp_int *y = monty_import(ec->mc, yorig);
- mp_int *y2 = monty_mul(ec->mc, y, y);
- mp_int *dy2 = monty_mul(ec->mc, ec->d, y2);
- mp_int *dy2ma = monty_sub(ec->mc, dy2, ec->a);
- mp_int *y2m1 = monty_sub(ec->mc, y2, monty_identity(ec->mc));
- mp_int *recip_denominator = monty_invert(ec->mc, dy2ma);
- mp_int *radicand = monty_mul(ec->mc, y2m1, recip_denominator);
- mp_int *x = monty_modsqrt(ec->sc, radicand, &success);
- mp_free(y2);
- mp_free(dy2);
- mp_free(dy2ma);
- mp_free(y2m1);
- mp_free(recip_denominator);
- mp_free(radicand);
- if (!success) {
- /* Failure! x^2 worked out to be a number that has no square
- * root mod p. In this situation there's no point in trying to
- * be time-constant, since the protocol sequence is going to
- * diverge anyway when we complain to whoever gave us this
- * bogus value. */
- mp_free(x);
- mp_free(y);
- return NULL;
- }
- /*
- * Choose whichever of x and p-x has the specified parity (of its
- * lowest positive residue mod p).
- */
- mp_int *tmp = monty_export(ec->mc, x);
- unsigned flip = (mp_get_bit(tmp, 0) ^ desired_x_parity) & 1;
- mp_sub_into(tmp, ec->p, x);
- mp_select_into(x, x, tmp, flip);
- mp_free(tmp);
- return ecc_edwards_point_new_imported(ec, x, y);
- }
- static void ecc_edwards_cond_overwrite(
- EdwardsPoint *dest, EdwardsPoint *src, unsigned overwrite)
- {
- mp_select_into(dest->X, dest->X, src->X, overwrite);
- mp_select_into(dest->Y, dest->Y, src->Y, overwrite);
- mp_select_into(dest->Z, dest->Z, src->Z, overwrite);
- mp_select_into(dest->T, dest->T, src->T, overwrite);
- }
- static void ecc_edwards_cond_swap(
- EdwardsPoint *P, EdwardsPoint *Q, unsigned swap)
- {
- mp_cond_swap(P->X, Q->X, swap);
- mp_cond_swap(P->Y, Q->Y, swap);
- mp_cond_swap(P->Z, Q->Z, swap);
- mp_cond_swap(P->T, Q->T, swap);
- }
- EdwardsPoint *ecc_edwards_add(EdwardsPoint *P, EdwardsPoint *Q)
- {
- EdwardsCurve *ec = P->ec;
- assert(Q->ec == ec);
- EdwardsPoint *S = ecc_edwards_point_new_empty(ec);
- /*
- * The affine rule for Edwards addition of (x1,y1) and (x2,y2) is
- *
- * x_out = (x1 y2 + y1 x2) / (1 + d x1 x2 y1 y2)
- * y_out = (y1 y2 - a x1 x2) / (1 - d x1 x2 y1 y2)
- *
- * The formulae below are listed as 'add-2008-hwcd' in
- * https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
- *
- * and if you undo the careful optimisation to find out what
- * they're actually computing, it comes out to
- *
- * X_out = (X1 Y2 + Y1 X2) (Z1 Z2 - d T1 T2)
- * Y_out = (Y1 Y2 - a X1 X2) (Z1 Z2 + d T1 T2)
- * Z_out = (Z1 Z2 - d T1 T2) (Z1 Z2 + d T1 T2)
- * T_out = (X1 Y2 + Y1 X2) (Y1 Y2 - a X1 X2)
- */
- mp_int *PxQx = monty_mul(ec->mc, P->X, Q->X);
- mp_int *PyQy = monty_mul(ec->mc, P->Y, Q->Y);
- mp_int *PtQt = monty_mul(ec->mc, P->T, Q->T);
- mp_int *PzQz = monty_mul(ec->mc, P->Z, Q->Z);
- mp_int *Psum = monty_add(ec->mc, P->X, P->Y);
- mp_int *Qsum = monty_add(ec->mc, Q->X, Q->Y);
- mp_int *aPxQx = monty_mul(ec->mc, ec->a, PxQx);
- mp_int *dPtQt = monty_mul(ec->mc, ec->d, PtQt);
- mp_int *sumprod = monty_mul(ec->mc, Psum, Qsum);
- mp_int *xx_p_yy = monty_add(ec->mc, PxQx, PyQy);
- mp_int *E = monty_sub(ec->mc, sumprod, xx_p_yy);
- mp_int *F = monty_sub(ec->mc, PzQz, dPtQt);
- mp_int *G = monty_add(ec->mc, PzQz, dPtQt);
- mp_int *H = monty_sub(ec->mc, PyQy, aPxQx);
- S->X = monty_mul(ec->mc, E, F);
- S->Z = monty_mul(ec->mc, F, G);
- S->Y = monty_mul(ec->mc, G, H);
- S->T = monty_mul(ec->mc, H, E);
- mp_free(PxQx);
- mp_free(PyQy);
- mp_free(PtQt);
- mp_free(PzQz);
- mp_free(Psum);
- mp_free(Qsum);
- mp_free(aPxQx);
- mp_free(dPtQt);
- mp_free(sumprod);
- mp_free(xx_p_yy);
- mp_free(E);
- mp_free(F);
- mp_free(G);
- mp_free(H);
- return S;
- }
- static void ecc_edwards_normalise(EdwardsPoint *ep)
- {
- EdwardsCurve *ec = ep->ec;
- mp_int *zinv = monty_invert(ec->mc, ep->Z);
- monty_mul_into(ec->mc, ep->X, ep->X, zinv);
- monty_mul_into(ec->mc, ep->Y, ep->Y, zinv);
- monty_mul_into(ec->mc, ep->Z, ep->Z, zinv);
- mp_free(zinv);
- monty_mul_into(ec->mc, ep->T, ep->X, ep->Y);
- }
- EdwardsPoint *ecc_edwards_multiply(EdwardsPoint *B, mp_int *n)
- {
- EdwardsPoint *two_B = ecc_edwards_add(B, B);
- EdwardsPoint *k_B = ecc_edwards_point_copy(B);
- EdwardsPoint *kplus1_B = ecc_edwards_point_copy(two_B);
- /*
- * Another copy of the same exponentiation routine following the
- * pattern of the Montgomery ladder, because it works as well as
- * any other technique and this way I didn't have to debug two of
- * them.
- */
- unsigned not_started_yet = 1;
- for (size_t bitindex = mp_max_bits(n); bitindex-- > 0 ;) {
- unsigned nbit = mp_get_bit(n, bitindex);
- EdwardsPoint *sum = ecc_edwards_add(k_B, kplus1_B);
- ecc_edwards_cond_swap(k_B, kplus1_B, nbit);
- EdwardsPoint *other = ecc_edwards_add(k_B, k_B);
- ecc_edwards_point_free(k_B);
- ecc_edwards_point_free(kplus1_B);
- k_B = other;
- kplus1_B = sum;
- ecc_edwards_cond_swap(k_B, kplus1_B, nbit);
- ecc_edwards_cond_overwrite(k_B, B, not_started_yet);
- ecc_edwards_cond_overwrite(kplus1_B, two_B, not_started_yet);
- not_started_yet &= ~nbit;
- }
- ecc_edwards_point_free(two_B);
- ecc_edwards_point_free(kplus1_B);
- return k_B;
- }
- /*
- * Helper routine to determine whether two values each given as a pair
- * of projective coordinates represent the same affine value.
- */
- static inline unsigned projective_eq(
- MontyContext *mc, mp_int *An, mp_int *Ad,
- mp_int *Bn, mp_int *Bd)
- {
- mp_int *AnBd = monty_mul(mc, An, Bd);
- mp_int *BnAd = monty_mul(mc, Bn, Ad);
- unsigned toret = mp_cmp_eq(AnBd, BnAd);
- mp_free(AnBd);
- mp_free(BnAd);
- return toret;
- }
- unsigned ecc_edwards_eq(EdwardsPoint *P, EdwardsPoint *Q)
- {
- EdwardsCurve *ec = P->ec;
- assert(Q->ec == ec);
- return (projective_eq(ec->mc, P->X, P->Z, Q->X, Q->Z) &
- projective_eq(ec->mc, P->Y, P->Z, Q->Y, Q->Z));
- }
- void ecc_edwards_get_affine(EdwardsPoint *ep, mp_int **x, mp_int **y)
- {
- EdwardsCurve *ec = ep->ec;
- ecc_edwards_normalise(ep);
- if (x)
- *x = monty_export(ec->mc, ep->X);
- if (y)
- *y = monty_export(ec->mc, ep->Y);
- }
|