123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134 |
- /*
- * Software implementation of AES.
- *
- * This implementation uses a bit-sliced representation. Instead of
- * the obvious approach of storing the cipher state so that each byte
- * (or field element, or entry in the cipher matrix) occupies 8
- * contiguous bits in a machine integer somewhere, we organise the
- * cipher state as an array of 8 integers, in such a way that each
- * logical byte of the cipher state occupies one bit in each integer,
- * all at the same position. This allows us to do parallel logic on
- * all bytes of the state by doing bitwise operations between the 8
- * integers; in particular, the S-box (SubBytes) lookup is done this
- * way, which takes about 110 operations - but for those 110 bitwise
- * ops you get 64 S-box lookups, not just one.
- */
- #include "ssh.h"
- #include "aes.h"
- #include "mpint_i.h" /* we reuse the BignumInt system */
- static bool aes_sw_available(void)
- {
- /* Software AES is always available */
- return true;
- }
- #define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2)
- #ifdef BITSLICED_DEBUG
- /* Dump function that undoes the bitslicing transform, so you can see
- * the logical data represented by a set of slice words. */
- static inline void dumpslices_uint16_t(
- const char *prefix, const uint16_t slices[8])
- {
- printf("%-30s", prefix);
- for (unsigned byte = 0; byte < 16; byte++) {
- unsigned byteval = 0;
- for (unsigned bit = 0; bit < 8; bit++)
- byteval |= (1 & (slices[bit] >> byte)) << bit;
- printf("%02x", byteval);
- }
- printf("\n");
- }
- static inline void dumpslices_BignumInt(
- const char *prefix, const BignumInt slices[8])
- {
- printf("%-30s", prefix);
- for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) {
- for (unsigned byte = 0; byte < 16; byte++) {
- unsigned byteval = 0;
- for (unsigned bit = 0; bit < 8; bit++)
- byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit;
- printf("%02x", byteval);
- }
- if (iter+1 < SLICE_PARALLELISM)
- printf(" ");
- }
- printf("\n");
- }
- #else
- #define dumpslices_uintN_t(prefix, slices) ((void)0)
- #define dumpslices_BignumInt(prefix, slices) ((void)0)
- #endif
- /* -----
- * Bit-slicing transformation: convert between an array of 16 uint8_t
- * and an array of 8 uint16_t, so as to interchange the bit index
- * within each element and the element index within the array. (That
- * is, bit j of input[i] == bit i of output[j].
- */
- #define SWAPWORDS(shift) do \
- { \
- uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1); \
- uint64_t diff = ((i0 >> shift) ^ i1) & mask; \
- i0 ^= diff << shift; \
- i1 ^= diff; \
- } while (0)
- #define SWAPINWORD(i, bigshift, smallshift) do \
- { \
- uint64_t mask = ~(uint64_t)0; \
- mask /= ((1ULL << bigshift) + 1); \
- mask /= ((1ULL << smallshift) + 1); \
- mask <<= smallshift; \
- unsigned shift = bigshift - smallshift; \
- uint64_t diff = ((i >> shift) ^ i) & mask; \
- i ^= diff ^ (diff << shift); \
- } while (0)
- #define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do \
- { \
- uint64_t i0 = GET_64BIT_LSB_FIRST(bytes); \
- uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8); \
- SWAPINWORD(i0, 8, 1); \
- SWAPINWORD(i1, 8, 1); \
- SWAPINWORD(i0, 16, 2); \
- SWAPINWORD(i1, 16, 2); \
- SWAPINWORD(i0, 32, 4); \
- SWAPINWORD(i1, 32, 4); \
- SWAPWORDS(8); \
- slices[0] assign_op (uintN_t)((i0 >> 0) & 0xFFFF) << (shift); \
- slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift); \
- slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift); \
- slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift); \
- slices[1] assign_op (uintN_t)((i1 >> 0) & 0xFFFF) << (shift); \
- slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift); \
- slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift); \
- slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift); \
- } while (0)
- #define FROM_BITSLICES(bytes, slices, shift) do \
- { \
- uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF); \
- i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF); \
- i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF); \
- i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF); \
- uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF); \
- i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF); \
- i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF); \
- i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF); \
- SWAPWORDS(8); \
- SWAPINWORD(i0, 32, 4); \
- SWAPINWORD(i1, 32, 4); \
- SWAPINWORD(i0, 16, 2); \
- SWAPINWORD(i1, 16, 2); \
- SWAPINWORD(i0, 8, 1); \
- SWAPINWORD(i1, 8, 1); \
- PUT_64BIT_LSB_FIRST(bytes, i0); \
- PUT_64BIT_LSB_FIRST((bytes) + 8, i1); \
- } while (0)
- /* -----
- * Some macros that will be useful repeatedly.
- */
- /* Iterate a unary transformation over all 8 slices. */
- #define ITERATE(MACRO, output, input, uintN_t) do \
- { \
- MACRO(output[0], input[0], uintN_t); \
- MACRO(output[1], input[1], uintN_t); \
- MACRO(output[2], input[2], uintN_t); \
- MACRO(output[3], input[3], uintN_t); \
- MACRO(output[4], input[4], uintN_t); \
- MACRO(output[5], input[5], uintN_t); \
- MACRO(output[6], input[6], uintN_t); \
- MACRO(output[7], input[7], uintN_t); \
- } while (0)
- /* Simply add (i.e. XOR) two whole sets of slices together. */
- #define BITSLICED_ADD(output, lhs, rhs) do \
- { \
- output[0] = lhs[0] ^ rhs[0]; \
- output[1] = lhs[1] ^ rhs[1]; \
- output[2] = lhs[2] ^ rhs[2]; \
- output[3] = lhs[3] ^ rhs[3]; \
- output[4] = lhs[4] ^ rhs[4]; \
- output[5] = lhs[5] ^ rhs[5]; \
- output[6] = lhs[6] ^ rhs[6]; \
- output[7] = lhs[7] ^ rhs[7]; \
- } while (0)
- /* -----
- * The AES S-box, in pure bitwise logic so that it can be run in
- * parallel on whole words full of bit-sliced field elements.
- *
- * Source: 'A new combinational logic minimization technique with
- * applications to cryptology', https://eprint.iacr.org/2009/191
- *
- * As a minor speed optimisation, I use a modified version of the
- * S-box which omits the additive constant 0x63, i.e. this S-box
- * consists of only the field inversion and linear map components.
- * Instead, the addition of the constant is deferred until after the
- * subsequent ShiftRows and MixColumns stages, so that it happens at
- * the same time as adding the next round key - and then we just make
- * it _part_ of the round key, so it doesn't cost any extra
- * instructions to add.
- *
- * (Obviously adding a constant to each byte commutes with ShiftRows,
- * which only permutes the bytes. It also commutes with MixColumns:
- * that's not quite so obvious, but since the effect of MixColumns is
- * to multiply a constant polynomial M into each column, it is obvious
- * that adding some polynomial K and then multiplying by M is
- * equivalent to multiplying by M and then adding the product KM. And
- * in fact, since the coefficients of M happen to sum to 1, it turns
- * out that KM = K, so we don't even have to change the constant when
- * we move it to the far side of MixColumns.)
- *
- * Of course, one knock-on effect of this is that the use of the S-box
- * *during* key setup has to be corrected by manually adding on the
- * constant afterwards!
- */
- /* Initial linear transformation for the forward S-box, from Fig 2 of
- * the paper. */
- #define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t) \
- uintN_t y14 = input[4] ^ input[2]; \
- uintN_t y13 = input[7] ^ input[1]; \
- uintN_t y9 = input[7] ^ input[4]; \
- uintN_t y8 = input[7] ^ input[2]; \
- uintN_t t0 = input[6] ^ input[5]; \
- uintN_t y1 = t0 ^ input[0]; \
- uintN_t y4 = y1 ^ input[4]; \
- uintN_t y12 = y13 ^ y14; \
- uintN_t y2 = y1 ^ input[7]; \
- uintN_t y5 = y1 ^ input[1]; \
- uintN_t y3 = y5 ^ y8; \
- uintN_t t1 = input[3] ^ y12; \
- uintN_t y15 = t1 ^ input[2]; \
- uintN_t y20 = t1 ^ input[6]; \
- uintN_t y6 = y15 ^ input[0]; \
- uintN_t y10 = y15 ^ t0; \
- uintN_t y11 = y20 ^ y9; \
- uintN_t y7 = input[0] ^ y11; \
- uintN_t y17 = y10 ^ y11; \
- uintN_t y19 = y10 ^ y8; \
- uintN_t y16 = t0 ^ y11; \
- uintN_t y21 = y13 ^ y16; \
- uintN_t y18 = input[7] ^ y16; \
- /* Make a copy of input[0] under a new name, because the core
- * will refer to it, and in the inverse version of the S-box
- * the corresponding value will be one of the calculated ones
- * and not in input[0] itself. */ \
- uintN_t i0 = input[0]; \
- /* end */
- /* Core nonlinear component, from Fig 3 of the paper. */
- #define SBOX_CORE(uintN_t) \
- uintN_t t2 = y12 & y15; \
- uintN_t t3 = y3 & y6; \
- uintN_t t4 = t3 ^ t2; \
- uintN_t t5 = y4 & i0; \
- uintN_t t6 = t5 ^ t2; \
- uintN_t t7 = y13 & y16; \
- uintN_t t8 = y5 & y1; \
- uintN_t t9 = t8 ^ t7; \
- uintN_t t10 = y2 & y7; \
- uintN_t t11 = t10 ^ t7; \
- uintN_t t12 = y9 & y11; \
- uintN_t t13 = y14 & y17; \
- uintN_t t14 = t13 ^ t12; \
- uintN_t t15 = y8 & y10; \
- uintN_t t16 = t15 ^ t12; \
- uintN_t t17 = t4 ^ t14; \
- uintN_t t18 = t6 ^ t16; \
- uintN_t t19 = t9 ^ t14; \
- uintN_t t20 = t11 ^ t16; \
- uintN_t t21 = t17 ^ y20; \
- uintN_t t22 = t18 ^ y19; \
- uintN_t t23 = t19 ^ y21; \
- uintN_t t24 = t20 ^ y18; \
- uintN_t t25 = t21 ^ t22; \
- uintN_t t26 = t21 & t23; \
- uintN_t t27 = t24 ^ t26; \
- uintN_t t28 = t25 & t27; \
- uintN_t t29 = t28 ^ t22; \
- uintN_t t30 = t23 ^ t24; \
- uintN_t t31 = t22 ^ t26; \
- uintN_t t32 = t31 & t30; \
- uintN_t t33 = t32 ^ t24; \
- uintN_t t34 = t23 ^ t33; \
- uintN_t t35 = t27 ^ t33; \
- uintN_t t36 = t24 & t35; \
- uintN_t t37 = t36 ^ t34; \
- uintN_t t38 = t27 ^ t36; \
- uintN_t t39 = t29 & t38; \
- uintN_t t40 = t25 ^ t39; \
- uintN_t t41 = t40 ^ t37; \
- uintN_t t42 = t29 ^ t33; \
- uintN_t t43 = t29 ^ t40; \
- uintN_t t44 = t33 ^ t37; \
- uintN_t t45 = t42 ^ t41; \
- uintN_t z0 = t44 & y15; \
- uintN_t z1 = t37 & y6; \
- uintN_t z2 = t33 & i0; \
- uintN_t z3 = t43 & y16; \
- uintN_t z4 = t40 & y1; \
- uintN_t z5 = t29 & y7; \
- uintN_t z6 = t42 & y11; \
- uintN_t z7 = t45 & y17; \
- uintN_t z8 = t41 & y10; \
- uintN_t z9 = t44 & y12; \
- uintN_t z10 = t37 & y3; \
- uintN_t z11 = t33 & y4; \
- uintN_t z12 = t43 & y13; \
- uintN_t z13 = t40 & y5; \
- uintN_t z14 = t29 & y2; \
- uintN_t z15 = t42 & y9; \
- uintN_t z16 = t45 & y14; \
- uintN_t z17 = t41 & y8; \
- /* end */
- /* Final linear transformation for the forward S-box, from Fig 4 of
- * the paper. */
- #define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t) \
- uintN_t t46 = z15 ^ z16; \
- uintN_t t47 = z10 ^ z11; \
- uintN_t t48 = z5 ^ z13; \
- uintN_t t49 = z9 ^ z10; \
- uintN_t t50 = z2 ^ z12; \
- uintN_t t51 = z2 ^ z5; \
- uintN_t t52 = z7 ^ z8; \
- uintN_t t53 = z0 ^ z3; \
- uintN_t t54 = z6 ^ z7; \
- uintN_t t55 = z16 ^ z17; \
- uintN_t t56 = z12 ^ t48; \
- uintN_t t57 = t50 ^ t53; \
- uintN_t t58 = z4 ^ t46; \
- uintN_t t59 = z3 ^ t54; \
- uintN_t t60 = t46 ^ t57; \
- uintN_t t61 = z14 ^ t57; \
- uintN_t t62 = t52 ^ t58; \
- uintN_t t63 = t49 ^ t58; \
- uintN_t t64 = z4 ^ t59; \
- uintN_t t65 = t61 ^ t62; \
- uintN_t t66 = z1 ^ t63; \
- output[7] = t59 ^ t63; \
- output[1] = t56 ^ t62; \
- output[0] = t48 ^ t60; \
- uintN_t t67 = t64 ^ t65; \
- output[4] = t53 ^ t66; \
- output[3] = t51 ^ t66; \
- output[2] = t47 ^ t65; \
- output[6] = t64 ^ output[4]; \
- output[5] = t55 ^ t67; \
- /* end */
- #define BITSLICED_SUBBYTES(output, input, uintN_t) do { \
- SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t); \
- SBOX_CORE(uintN_t); \
- SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t); \
- } while (0)
- /*
- * Initial and final linear transformations for the backward S-box. I
- * generated these myself, by implementing the linear-transform
- * optimisation algorithm in the paper, and applying it to the
- * matrices calculated by _their_ top and bottom transformations, pre-
- * and post-multiplied as appropriate by the linear map in the inverse
- * S_box.
- */
- #define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t) \
- uintN_t y5 = input[4] ^ input[6]; \
- uintN_t y19 = input[3] ^ input[0]; \
- uintN_t itmp8 = y5 ^ input[0]; \
- uintN_t y4 = itmp8 ^ input[1]; \
- uintN_t y9 = input[4] ^ input[3]; \
- uintN_t y2 = y9 ^ y4; \
- uintN_t itmp9 = y2 ^ input[7]; \
- uintN_t y1 = y9 ^ input[0]; \
- uintN_t y6 = y5 ^ input[7]; \
- uintN_t y18 = y9 ^ input[5]; \
- uintN_t y7 = y18 ^ y2; \
- uintN_t y16 = y7 ^ y1; \
- uintN_t y21 = y7 ^ input[1]; \
- uintN_t y3 = input[4] ^ input[7]; \
- uintN_t y13 = y16 ^ y21; \
- uintN_t y8 = input[4] ^ y6; \
- uintN_t y10 = y8 ^ y19; \
- uintN_t y14 = y8 ^ y9; \
- uintN_t y20 = itmp9 ^ input[2]; \
- uintN_t y11 = y9 ^ y20; \
- uintN_t i0 = y11 ^ y7; \
- uintN_t y15 = i0 ^ y6; \
- uintN_t y17 = y16 ^ y15; \
- uintN_t y12 = itmp9 ^ input[3]; \
- /* end */
- #define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \
- uintN_t otmp18 = z15 ^ z6; \
- uintN_t otmp19 = z13 ^ otmp18; \
- uintN_t otmp20 = z12 ^ otmp19; \
- uintN_t otmp21 = z16 ^ otmp20; \
- uintN_t otmp22 = z8 ^ otmp21; \
- uintN_t otmp23 = z0 ^ otmp22; \
- uintN_t otmp24 = otmp22 ^ z3; \
- uintN_t otmp25 = otmp24 ^ z4; \
- uintN_t otmp26 = otmp25 ^ z2; \
- uintN_t otmp27 = z1 ^ otmp26; \
- uintN_t otmp28 = z14 ^ otmp27; \
- uintN_t otmp29 = otmp28 ^ z10; \
- output[4] = z2 ^ otmp23; \
- output[7] = z5 ^ otmp24; \
- uintN_t otmp30 = z11 ^ otmp29; \
- output[5] = z13 ^ otmp30; \
- uintN_t otmp31 = otmp25 ^ z8; \
- output[1] = z7 ^ otmp31; \
- uintN_t otmp32 = z11 ^ z9; \
- uintN_t otmp33 = z17 ^ otmp32; \
- uintN_t otmp34 = otmp30 ^ otmp33; \
- output[0] = z15 ^ otmp33; \
- uintN_t otmp35 = z12 ^ otmp34; \
- output[6] = otmp35 ^ z16; \
- uintN_t otmp36 = z1 ^ otmp23; \
- uintN_t otmp37 = z5 ^ otmp36; \
- output[2] = z4 ^ otmp37; \
- uintN_t otmp38 = z11 ^ output[1]; \
- uintN_t otmp39 = z2 ^ otmp38; \
- uintN_t otmp40 = z17 ^ otmp39; \
- uintN_t otmp41 = z0 ^ otmp40; \
- uintN_t otmp42 = z5 ^ otmp41; \
- uintN_t otmp43 = otmp42 ^ z10; \
- uintN_t otmp44 = otmp43 ^ z3; \
- output[3] = otmp44 ^ z16; \
- /* end */
- #define BITSLICED_INVSUBBYTES(output, input, uintN_t) do { \
- SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t); \
- SBOX_CORE(uintN_t); \
- SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t); \
- } while (0)
- /* -----
- * The ShiftRows transformation. This operates independently on each
- * bit slice.
- */
- #define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do \
- { \
- uintN_t mask, mask2, mask3, diff, x = (input); \
- /* Rotate rows 2 and 3 by 16 bits */ \
- mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- diff = ((x >> 8) ^ x) & mask; \
- x ^= diff ^ (diff << 8); \
- /* Rotate rows 1 and 3 by 8 bits */ \
- mask = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3); \
- /* Write output */ \
- (output) = x; \
- } while (0)
- #define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do \
- { \
- uintN_t mask, mask2, mask3, diff, x = (input); \
- /* Rotate rows 2 and 3 by 16 bits */ \
- mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- diff = ((x >> 8) ^ x) & mask; \
- x ^= diff ^ (diff << 8); \
- /* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \
- mask = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
- x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3); \
- /* Write output */ \
- (output) = x; \
- } while (0)
- #define BITSLICED_SHIFTROWS(output, input, uintN_t) do \
- { \
- ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t); \
- } while (0)
- #define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do \
- { \
- ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t); \
- } while (0)
- /* -----
- * The MixColumns transformation. This has to operate on all eight bit
- * slices at once, and also passes data back and forth between the
- * bits in an adjacent group of 4 within each slice.
- *
- * Notation: let F = GF(2)[X]/<X^8+X^4+X^3+X+1> be the finite field
- * used in AES, and let R = F[Y]/<Y^4+1> be the ring whose elements
- * represent the possible contents of a column of the matrix. I use X
- * and Y below in those senses, i.e. X is the value in F that
- * represents the byte 0x02, and Y is the value in R that cycles the
- * four bytes around by one if you multiply by it.
- */
- /* Multiply every column by Y^3, i.e. cycle it round one place to the
- * right. Operates on one bit slice at a time; you have to wrap it in
- * ITERATE to affect all the data at once. */
- #define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do \
- { \
- uintN_t mask, mask2, x; \
- mask = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF); \
- mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF); \
- x = input; \
- output = ((x << 3) & mask) ^ ((x >> 1) & mask2); \
- } while (0)
- /* Multiply every column by Y^2. */
- #define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do \
- { \
- uintN_t mask, mask2, x; \
- mask = 0xC * (((uintN_t)~(uintN_t)0) / 0xF); \
- mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF); \
- x = input; \
- output = ((x << 2) & mask) ^ ((x >> 2) & mask2); \
- } while (0)
- #define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do \
- { \
- uintN_t tmp = input; \
- BITSLICED_MUL_BY_Y3(tmp, input, uintN_t); \
- output = input ^ tmp; \
- } while (0)
- /* Multiply every column by 1+Y^2. */
- #define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do \
- { \
- uintN_t tmp = input; \
- BITSLICED_MUL_BY_Y2(tmp, input, uintN_t); \
- output = input ^ tmp; \
- } while (0)
- /* Multiply every field element by X. This has to feed data between
- * slices, so it does the whole job in one go without needing ITERATE. */
- #define BITSLICED_MUL_BY_X(output, input, uintN_t) do \
- { \
- uintN_t bit7 = input[7]; \
- output[7] = input[6]; \
- output[6] = input[5]; \
- output[5] = input[4]; \
- output[4] = input[3] ^ bit7; \
- output[3] = input[2] ^ bit7; \
- output[2] = input[1]; \
- output[1] = input[0] ^ bit7; \
- output[0] = bit7; \
- } while (0)
- /*
- * The MixColumns constant is
- * M = X + Y + Y^2 + (X+1)Y^3
- * which we construct by rearranging it into
- * M = 1 + (1+Y^3) [ X + (1+Y^2) ]
- */
- #define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do \
- { \
- uintN_t a[8], aX[8], b[8]; \
- /* a = input * (1+Y^3) */ \
- ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t); \
- /* aX = a * X */ \
- BITSLICED_MUL_BY_X(aX, a, uintN_t); \
- /* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */ \
- ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t); \
- /* output = input + aX + b (reusing a as a temp */ \
- BITSLICED_ADD(a, aX, b); \
- BITSLICED_ADD(output, input, a); \
- } while (0)
- /*
- * The InvMixColumns constant, written out longhand, is
- * I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3
- * We represent this as
- * I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3)
- */
- #define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do \
- { \
- /* We need input * X^i for i=1,...,3 */ \
- uintN_t X[8], X2[8], X3[8]; \
- BITSLICED_MUL_BY_X(X, input, uintN_t); \
- BITSLICED_MUL_BY_X(X2, X, uintN_t); \
- BITSLICED_MUL_BY_X(X3, X2, uintN_t); \
- /* Sum them all and multiply by 1+Y+Y^2+Y^3. */ \
- uintN_t S[8]; \
- BITSLICED_ADD(S, input, X); \
- BITSLICED_ADD(S, S, X2); \
- BITSLICED_ADD(S, S, X3); \
- ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t); \
- ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t); \
- /* Compute the X(Y+Y^2) term. */ \
- uintN_t A[8]; \
- ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t); \
- ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t); \
- /* Compute the X^2(Y+Y^3) term. */ \
- uintN_t B[8]; \
- ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t); \
- ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t); \
- /* And add all the pieces together. */ \
- BITSLICED_ADD(S, S, input); \
- BITSLICED_ADD(S, S, A); \
- BITSLICED_ADD(output, S, B); \
- } while (0)
- /* -----
- * Put it all together into a cipher round.
- */
- /* Dummy macro to get rid of the MixColumns in the final round. */
- #define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0)
- #define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
- static void aes_sliced_round_e_##suffix( \
- uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
- { \
- BITSLICED_SUBBYTES(output, input, uintN_t); \
- BITSLICED_SHIFTROWS(output, output, uintN_t); \
- mixcol_macro(output, output, uintN_t); \
- BITSLICED_ADD(output, output, roundkey); \
- }
- ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS)
- ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS)
- ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS)
- ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS)
- #define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
- static void aes_sliced_round_d_##suffix( \
- uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
- { \
- BITSLICED_ADD(output, input, roundkey); \
- mixcol_macro(output, output, uintN_t); \
- BITSLICED_INVSUBBYTES(output, output, uintN_t); \
- BITSLICED_INVSHIFTROWS(output, output, uintN_t); \
- }
- #if 0 /* no cipher mode we support requires serial decryption */
- DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS)
- DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS)
- #endif
- DECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS)
- DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS)
- /* -----
- * Key setup function.
- */
- typedef struct aes_sliced_key aes_sliced_key;
- struct aes_sliced_key {
- BignumInt roundkeys_parallel[MAXROUNDKEYS * 8];
- uint16_t roundkeys_serial[MAXROUNDKEYS * 8];
- unsigned rounds;
- };
- static void aes_sliced_key_setup(
- aes_sliced_key *sk, const void *vkey, size_t keybits)
- {
- const unsigned char *key = (const unsigned char *)vkey;
- size_t key_words = keybits / 32;
- sk->rounds = key_words + 6;
- size_t sched_words = (sk->rounds + 1) * 4;
- unsigned rconpos = 0;
- uint16_t *outslices = sk->roundkeys_serial;
- unsigned outshift = 0;
- memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial));
- uint8_t inblk[16];
- memset(inblk, 0, 16);
- uint16_t slices[8];
- for (size_t i = 0; i < sched_words; i++) {
- /*
- * Prepare a word of round key in the low 4 bits of each
- * integer in slices[].
- */
- if (i < key_words) {
- memcpy(inblk, key + 4*i, 4);
- TO_BITSLICES(slices, inblk, uint16_t, =, 0);
- } else {
- unsigned wordindex, bitshift;
- uint16_t *prevslices;
- /* Fetch the (i-1)th key word */
- wordindex = i-1;
- bitshift = 4 * (wordindex & 3);
- prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
- for (size_t i = 0; i < 8; i++)
- slices[i] = prevslices[i] >> bitshift;
- /* Decide what we're doing in this expansion stage */
- bool rotate_and_round_constant = (i % key_words == 0);
- bool sub = rotate_and_round_constant ||
- (key_words == 8 && i % 8 == 4);
- if (rotate_and_round_constant) {
- for (size_t i = 0; i < 8; i++)
- slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF;
- }
- if (sub) {
- /* Apply the SubBytes transform to the key word. But
- * here we need to apply the _full_ SubBytes from the
- * spec, including the constant which our S-box leaves
- * out. */
- BITSLICED_SUBBYTES(slices, slices, uint16_t);
- slices[0] ^= 0xFFFF;
- slices[1] ^= 0xFFFF;
- slices[5] ^= 0xFFFF;
- slices[6] ^= 0xFFFF;
- }
- if (rotate_and_round_constant) {
- assert(rconpos < lenof(aes_key_setup_round_constants));
- uint8_t rcon = aes_key_setup_round_constants[rconpos++];
- for (size_t i = 0; i < 8; i++)
- slices[i] ^= 1 & (rcon >> i);
- }
- /* Combine with the (i-Nk)th key word */
- wordindex = i - key_words;
- bitshift = 4 * (wordindex & 3);
- prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
- for (size_t i = 0; i < 8; i++)
- slices[i] ^= prevslices[i] >> bitshift;
- }
- /*
- * Now copy it into sk.
- */
- for (unsigned b = 0; b < 8; b++)
- outslices[b] |= (slices[b] & 0xF) << outshift;
- outshift += 4;
- if (outshift == 16) {
- outshift = 0;
- outslices += 8;
- }
- }
- smemclr(inblk, sizeof(inblk));
- smemclr(slices, sizeof(slices));
- /*
- * Add the S-box constant to every round key after the first one,
- * compensating for it being left out in the main cipher.
- */
- for (size_t i = 8; i < 8 * (sched_words/4); i += 8) {
- sk->roundkeys_serial[i+0] ^= 0xFFFF;
- sk->roundkeys_serial[i+1] ^= 0xFFFF;
- sk->roundkeys_serial[i+5] ^= 0xFFFF;
- sk->roundkeys_serial[i+6] ^= 0xFFFF;
- }
- /*
- * Replicate that set of round keys into larger integers for the
- * parallel versions of the cipher.
- */
- for (size_t i = 0; i < 8 * (sched_words / 4); i++) {
- sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] *
- ((BignumInt)~(BignumInt)0 / 0xFFFF);
- }
- }
- /* -----
- * The full cipher primitive, including transforming the input and
- * output to/from bit-sliced form.
- */
- #define ENCRYPT_FN(suffix, uintN_t, nblocks) \
- static void aes_sliced_e_##suffix( \
- uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
- { \
- uintN_t state[8]; \
- TO_BITSLICES(state, input, uintN_t, =, 0); \
- for (unsigned i = 1; i < nblocks; i++) { \
- input += 16; \
- TO_BITSLICES(state, input, uintN_t, |=, i*16); \
- } \
- const uintN_t *keys = sk->roundkeys_##suffix; \
- BITSLICED_ADD(state, state, keys); \
- keys += 8; \
- for (unsigned i = 0; i < sk->rounds-1; i++) { \
- aes_sliced_round_e_##suffix(state, state, keys); \
- keys += 8; \
- } \
- aes_sliced_round_e_##suffix##_last(state, state, keys); \
- for (unsigned i = 0; i < nblocks; i++) { \
- FROM_BITSLICES(output, state, i*16); \
- output += 16; \
- } \
- }
- #define DECRYPT_FN(suffix, uintN_t, nblocks) \
- static void aes_sliced_d_##suffix( \
- uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
- { \
- uintN_t state[8]; \
- TO_BITSLICES(state, input, uintN_t, =, 0); \
- for (unsigned i = 1; i < nblocks; i++) { \
- input += 16; \
- TO_BITSLICES(state, input, uintN_t, |=, i*16); \
- } \
- const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds; \
- aes_sliced_round_d_##suffix##_first(state, state, keys); \
- keys -= 8; \
- for (unsigned i = 0; i < sk->rounds-1; i++) { \
- aes_sliced_round_d_##suffix(state, state, keys); \
- keys -= 8; \
- } \
- BITSLICED_ADD(state, state, keys); \
- for (unsigned i = 0; i < nblocks; i++) { \
- FROM_BITSLICES(output, state, i*16); \
- output += 16; \
- } \
- }
- ENCRYPT_FN(serial, uint16_t, 1)
- #if 0 /* no cipher mode we support requires serial decryption */
- DECRYPT_FN(serial, uint16_t, 1)
- #endif
- ENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
- DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
- /* -----
- * The SSH interface and the cipher modes.
- */
- #define SDCTR_WORDS (16 / BIGNUM_INT_BYTES)
- typedef struct aes_sw_context aes_sw_context;
- struct aes_sw_context {
- aes_sliced_key sk;
- union {
- struct {
- /* In CBC mode, the IV is just a copy of the last seen
- * cipher block. */
- uint8_t prevblk[16];
- } cbc;
- struct {
- /* In SDCTR mode, we keep the counter itself in a form
- * that's easy to increment. We also use the parallel
- * version of the core AES function, so we'll encrypt
- * multiple counter values in one go. That won't align
- * nicely with the sizes of data we're asked to encrypt,
- * so we must also store a cache of the last set of
- * keystream blocks we generated, and our current position
- * within that cache. */
- BignumInt counter[SDCTR_WORDS];
- uint8_t keystream[SLICE_PARALLELISM * 16];
- uint8_t *keystream_pos;
- } sdctr;
- struct {
- /* In GCM mode, the cipher preimage consists of three
- * sections: one fixed, one that increments per message
- * sent and MACed, and one that increments per cipher
- * block. */
- uint64_t msg_counter;
- uint32_t fixed_iv, block_counter;
- /* But we keep the precomputed keystream chunks just like
- * SDCTR mode. */
- uint8_t keystream[SLICE_PARALLELISM * 16];
- uint8_t *keystream_pos;
- } gcm;
- } iv;
- ssh_cipher ciph;
- };
- static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg)
- {
- aes_sw_context *ctx = snew(aes_sw_context);
- ctx->ciph.vt = alg;
- return &ctx->ciph;
- }
- static void aes_sw_free(ssh_cipher *ciph)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- smemclr(ctx, sizeof(*ctx));
- sfree(ctx);
- }
- static void aes_sw_setkey(ssh_cipher *ciph, const void *vkey)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits);
- }
- static void aes_sw_setiv_cbc(ssh_cipher *ciph, const void *iv)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- memcpy(ctx->iv.cbc.prevblk, iv, 16);
- }
- static void aes_sw_setiv_sdctr(ssh_cipher *ciph, const void *viv)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- const uint8_t *iv = (const uint8_t *)viv;
- /* Import the initial counter value into the internal representation */
- for (unsigned i = 0; i < SDCTR_WORDS; i++)
- ctx->iv.sdctr.counter[i] =
- GET_BIGNUMINT_MSB_FIRST(
- iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES);
- /* Set keystream_pos to indicate that the keystream cache is
- * currently empty */
- ctx->iv.sdctr.keystream_pos =
- ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
- }
- static void aes_sw_setiv_gcm(ssh_cipher *ciph, const void *viv)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- const uint8_t *iv = (const uint8_t *)viv;
- ctx->iv.gcm.fixed_iv = GET_32BIT_MSB_FIRST(iv);
- ctx->iv.gcm.msg_counter = GET_64BIT_MSB_FIRST(iv + 4);
- ctx->iv.gcm.block_counter = 1;
- /* Set keystream_pos to indicate that the keystream cache is
- * currently empty */
- ctx->iv.gcm.keystream_pos =
- ctx->iv.gcm.keystream + sizeof(ctx->iv.gcm.keystream);
- }
- static void aes_sw_next_message_gcm(ssh_cipher *ciph)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- ctx->iv.gcm.msg_counter++;
- ctx->iv.gcm.block_counter = 1;
- ctx->iv.gcm.keystream_pos =
- ctx->iv.gcm.keystream + sizeof(ctx->iv.gcm.keystream);
- }
- typedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched);
- static inline void memxor16(void *vout, const void *vlhs, const void *vrhs)
- {
- uint8_t *out = (uint8_t *)vout;
- const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs;
- uint64_t w;
- w = GET_64BIT_LSB_FIRST(lhs);
- w ^= GET_64BIT_LSB_FIRST(rhs);
- PUT_64BIT_LSB_FIRST(out, w);
- w = GET_64BIT_LSB_FIRST(lhs + 8);
- w ^= GET_64BIT_LSB_FIRST(rhs + 8);
- PUT_64BIT_LSB_FIRST(out + 8, w);
- }
- static inline void aes_cbc_sw_encrypt(
- ssh_cipher *ciph, void *vblk, int blklen)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- /*
- * CBC encryption has to be done serially, because the input to
- * each run of the cipher includes the output from the previous
- * run.
- */
- for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
- blk < finish; blk += 16) {
- /*
- * We use the IV array itself as the location for the
- * encryption, because there's no reason not to.
- */
- /* XOR the new plaintext block into the previous cipher block */
- memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk);
- /* Run the cipher over the result, which leaves it
- * conveniently already stored in ctx->iv */
- aes_sliced_e_serial(
- ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk);
- /* Copy it to the output location */
- memcpy(blk, ctx->iv.cbc.prevblk, 16);
- }
- }
- static inline void aes_cbc_sw_decrypt(
- ssh_cipher *ciph, void *vblk, int blklen)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- uint8_t *blk = (uint8_t *)vblk;
- /*
- * CBC decryption can run in parallel, because all the
- * _ciphertext_ blocks are already available.
- */
- size_t blocks_remaining = blklen / 16;
- uint8_t data[SLICE_PARALLELISM * 16];
- /* Zeroing the data array is probably overcautious, but it avoids
- * technically undefined behaviour from leaving it uninitialised
- * if our very first iteration doesn't include enough cipher
- * blocks to populate it fully */
- memset(data, 0, sizeof(data));
- while (blocks_remaining > 0) {
- /* Number of blocks we'll handle in this iteration. If we're
- * dealing with fewer than the maximum, it doesn't matter -
- * it's harmless to run the full parallel cipher function
- * anyway. */
- size_t blocks = (blocks_remaining < SLICE_PARALLELISM ?
- blocks_remaining : SLICE_PARALLELISM);
- /* Parallel-decrypt the input, in a separate array so we still
- * have the cipher stream available for XORing. */
- memcpy(data, blk, 16 * blocks);
- aes_sliced_d_parallel(data, data, &ctx->sk);
- /* Write the output and update the IV */
- for (size_t i = 0; i < blocks; i++) {
- uint8_t *decrypted = data + 16*i;
- uint8_t *output = blk + 16*i;
- memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk);
- memcpy(ctx->iv.cbc.prevblk, output, 16);
- memcpy(output, decrypted, 16);
- }
- /* Advance the input pointer. */
- blk += 16 * blocks;
- blocks_remaining -= blocks;
- }
- smemclr(data, sizeof(data));
- }
- static inline void aes_sdctr_sw(
- ssh_cipher *ciph, void *vblk, int blklen)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- /*
- * SDCTR encrypt/decrypt loops round one block at a time XORing
- * the keystream into the user's data, and periodically has to run
- * a parallel encryption operation to get more keystream.
- */
- uint8_t *keystream_end =
- ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
- for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
- blk < finish; blk += 16) {
- if (ctx->iv.sdctr.keystream_pos == keystream_end) {
- /*
- * Generate some keystream.
- */
- for (uint8_t *block = ctx->iv.sdctr.keystream;
- block < keystream_end; block += 16) {
- /* Format the counter value into the buffer. */
- for (unsigned i = 0; i < SDCTR_WORDS; i++)
- PUT_BIGNUMINT_MSB_FIRST(
- block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES,
- ctx->iv.sdctr.counter[i]);
- /* Increment the counter. */
- BignumCarry carry = 1;
- for (unsigned i = 0; i < SDCTR_WORDS; i++)
- BignumADC(ctx->iv.sdctr.counter[i], carry,
- ctx->iv.sdctr.counter[i], 0, carry);
- }
- /* Encrypt all those counter blocks. */
- aes_sliced_e_parallel(ctx->iv.sdctr.keystream,
- ctx->iv.sdctr.keystream, &ctx->sk);
- /* Reset keystream_pos to the start of the buffer. */
- ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream;
- }
- memxor16(blk, blk, ctx->iv.sdctr.keystream_pos);
- ctx->iv.sdctr.keystream_pos += 16;
- }
- }
- static inline void aes_encrypt_ecb_block_sw(ssh_cipher *ciph, void *blk)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- aes_sliced_e_serial(blk, blk, &ctx->sk);
- }
- static inline void aes_gcm_sw(
- ssh_cipher *ciph, void *vblk, int blklen)
- {
- aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
- /*
- * GCM encrypt/decrypt looks just like SDCTR, except that the
- * method of generating more keystream varies slightly.
- */
- uint8_t *keystream_end =
- ctx->iv.gcm.keystream + sizeof(ctx->iv.gcm.keystream);
- for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
- blk < finish; blk += 16) {
- if (ctx->iv.gcm.keystream_pos == keystream_end) {
- /*
- * Generate some keystream.
- */
- for (uint8_t *block = ctx->iv.gcm.keystream;
- block < keystream_end; block += 16) {
- /* Format the counter value into the buffer. */
- PUT_32BIT_MSB_FIRST(block, ctx->iv.gcm.fixed_iv);
- PUT_64BIT_MSB_FIRST(block + 4, ctx->iv.gcm.msg_counter);
- PUT_32BIT_MSB_FIRST(block + 12, ctx->iv.gcm.block_counter);
- /* Increment the counter. */
- ctx->iv.gcm.block_counter++;
- }
- /* Encrypt all those counter blocks. */
- aes_sliced_e_parallel(ctx->iv.gcm.keystream,
- ctx->iv.gcm.keystream, &ctx->sk);
- /* Reset keystream_pos to the start of the buffer. */
- ctx->iv.gcm.keystream_pos = ctx->iv.gcm.keystream;
- }
- memxor16(blk, blk, ctx->iv.gcm.keystream_pos);
- ctx->iv.gcm.keystream_pos += 16;
- }
- }
- #define SW_ENC_DEC(len) \
- static void aes##len##_sw_cbc_encrypt( \
- ssh_cipher *ciph, void *vblk, int blklen) \
- { aes_cbc_sw_encrypt(ciph, vblk, blklen); } \
- static void aes##len##_sw_cbc_decrypt( \
- ssh_cipher *ciph, void *vblk, int blklen) \
- { aes_cbc_sw_decrypt(ciph, vblk, blklen); } \
- static void aes##len##_sw_sdctr( \
- ssh_cipher *ciph, void *vblk, int blklen) \
- { aes_sdctr_sw(ciph, vblk, blklen); } \
- static void aes##len##_sw_gcm( \
- ssh_cipher *ciph, void *vblk, int blklen) \
- { aes_gcm_sw(ciph, vblk, blklen); } \
- static void aes##len##_sw_encrypt_ecb_block( \
- ssh_cipher *ciph, void *vblk) \
- { aes_encrypt_ecb_block_sw(ciph, vblk); }
- SW_ENC_DEC(128)
- SW_ENC_DEC(192)
- SW_ENC_DEC(256)
- AES_EXTRA(_sw);
- AES_ALL_VTABLES(_sw, "unaccelerated");
|