12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183 |
- /*
- * Bignum routines for RSA and DH and stuff.
- */
- #include <stdio.h>
- #include <assert.h>
- #include <stdlib.h>
- #include <string.h>
- #include <limits.h>
- #include <ctype.h>
- #include "misc.h"
- #include "sshbn.h"
- #define BIGNUM_INTERNAL
- typedef BignumInt *Bignum;
- #include "ssh.h"
- BignumInt bnZero[1] = { 0 };
- BignumInt bnOne[2] = { 1, 1 };
- BignumInt bnTen[2] = { 1, 10 };
- /*
- * The Bignum format is an array of `BignumInt'. The first
- * element of the array counts the remaining elements. The
- * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
- * significant digit first. (So it's trivial to extract the bit
- * with value 2^n for any n.)
- *
- * All Bignums in this module are positive. Negative numbers must
- * be dealt with outside it.
- *
- * INVARIANT: the most significant word of any Bignum must be
- * nonzero.
- */
- Bignum Zero = bnZero, One = bnOne, Ten = bnTen;
- static Bignum newbn(int length)
- {
- Bignum b;
- assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);
- b = snewn(length + 1, BignumInt);
- memset(b, 0, (length + 1) * sizeof(*b));
- b[0] = length;
- return b;
- }
- void bn_restore_invariant(Bignum b)
- {
- while (b[0] > 1 && b[b[0]] == 0)
- b[0]--;
- }
- Bignum copybn(Bignum orig)
- {
- Bignum b = snewn(orig[0] + 1, BignumInt);
- if (!b)
- abort(); /* FIXME */
- memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
- return b;
- }
- void freebn(Bignum b)
- {
- /*
- * Burn the evidence, just in case.
- */
- smemclr(b, sizeof(b[0]) * (b[0] + 1));
- sfree(b);
- }
- Bignum bn_power_2(int n)
- {
- Bignum ret;
- assert(n >= 0);
- ret = newbn(n / BIGNUM_INT_BITS + 1);
- bignum_set_bit(ret, n, 1);
- return ret;
- }
- /*
- * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
- * big-endian arrays of 'len' BignumInts. Returns the carry off the
- * top.
- */
- static BignumCarry internal_add(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len)
- {
- int i;
- BignumCarry carry = 0;
- for (i = len-1; i >= 0; i--)
- BignumADC(c[i], carry, a[i], b[i], carry);
- return (BignumInt)carry;
- }
- /*
- * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
- * all big-endian arrays of 'len' BignumInts. Any borrow from the top
- * is ignored.
- */
- static void internal_sub(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len)
- {
- int i;
- BignumCarry carry = 1;
- for (i = len-1; i >= 0; i--)
- BignumADC(c[i], carry, a[i], ~b[i], carry);
- }
- /*
- * Compute c = a * b.
- * Input is in the first len words of a and b.
- * Result is returned in the first 2*len words of c.
- *
- * 'scratch' must point to an array of BignumInt of size at least
- * mul_compute_scratch(len). (This covers the needs of internal_mul
- * and all its recursive calls to itself.)
- */
- #define KARATSUBA_THRESHOLD 50
- static int mul_compute_scratch(int len)
- {
- int ret = 0;
- while (len > KARATSUBA_THRESHOLD) {
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
- int midlen = botlen + 1;
- ret += 4*midlen;
- len = midlen;
- }
- return ret;
- }
- static void internal_mul(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len, BignumInt *scratch)
- {
- if (len > KARATSUBA_THRESHOLD) {
- int i;
- /*
- * Karatsuba divide-and-conquer algorithm. Cut each input in
- * half, so that it's expressed as two big 'digits' in a giant
- * base D:
- *
- * a = a_1 D + a_0
- * b = b_1 D + b_0
- *
- * Then the product is of course
- *
- * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
- *
- * and we compute the three coefficients by recursively
- * calling ourself to do half-length multiplications.
- *
- * The clever bit that makes this worth doing is that we only
- * need _one_ half-length multiplication for the central
- * coefficient rather than the two that it obviouly looks
- * like, because we can use a single multiplication to compute
- *
- * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
- *
- * and then we subtract the other two coefficients (a_1 b_1
- * and a_0 b_0) which we were computing anyway.
- *
- * Hence we get to multiply two numbers of length N in about
- * three times as much work as it takes to multiply numbers of
- * length N/2, which is obviously better than the four times
- * as much work it would take if we just did a long
- * conventional multiply.
- */
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
- int midlen = botlen + 1;
- BignumCarry carry;
- #ifdef KARA_DEBUG
- int i;
- #endif
- /*
- * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
- * in the output array, so we can compute them immediately in
- * place.
- */
- #ifdef KARA_DEBUG
- printf("a1,a0 = 0x");
- for (i = 0; i < len; i++) {
- if (i == toplen) printf(", 0x");
- printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
- }
- printf("\n");
- printf("b1,b0 = 0x");
- for (i = 0; i < len; i++) {
- if (i == toplen) printf(", 0x");
- printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
- }
- printf("\n");
- #endif
- /* a_1 b_1 */
- internal_mul(a, b, c, toplen, scratch);
- #ifdef KARA_DEBUG
- printf("a1b1 = 0x");
- for (i = 0; i < 2*toplen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
- }
- printf("\n");
- #endif
- /* a_0 b_0 */
- internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
- #ifdef KARA_DEBUG
- printf("a0b0 = 0x");
- for (i = 0; i < 2*botlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
- }
- printf("\n");
- #endif
- /* Zero padding. midlen exceeds toplen by at most 2, so just
- * zero the first two words of each input and the rest will be
- * copied over. */
- scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
- for (i = 0; i < toplen; i++) {
- scratch[midlen - toplen + i] = a[i]; /* a_1 */
- scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
- }
- /* compute a_1 + a_0 */
- scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
- #ifdef KARA_DEBUG
- printf("a1plusa0 = 0x");
- for (i = 0; i < midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
- }
- printf("\n");
- #endif
- /* compute b_1 + b_0 */
- scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
- scratch+midlen+1, botlen);
- #ifdef KARA_DEBUG
- printf("b1plusb0 = 0x");
- for (i = 0; i < midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
- }
- printf("\n");
- #endif
- /*
- * Now we can do the third multiplication.
- */
- internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
- scratch + 4*midlen);
- #ifdef KARA_DEBUG
- printf("a1plusa0timesb1plusb0 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
- }
- printf("\n");
- #endif
- /*
- * Now we can reuse the first half of 'scratch' to compute the
- * sum of the outer two coefficients, to subtract from that
- * product to obtain the middle one.
- */
- scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
- for (i = 0; i < 2*toplen; i++)
- scratch[2*midlen - 2*toplen + i] = c[i];
- scratch[1] = internal_add(scratch+2, c + 2*toplen,
- scratch+2, 2*botlen);
- #ifdef KARA_DEBUG
- printf("a1b1plusa0b0 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
- }
- printf("\n");
- #endif
- internal_sub(scratch + 2*midlen, scratch,
- scratch + 2*midlen, 2*midlen);
- #ifdef KARA_DEBUG
- printf("a1b0plusa0b1 = 0x");
- for (i = 0; i < 2*midlen; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
- }
- printf("\n");
- #endif
- /*
- * And now all we need to do is to add that middle coefficient
- * back into the output. We may have to propagate a carry
- * further up the output, but we can be sure it won't
- * propagate right the way off the top.
- */
- carry = internal_add(c + 2*len - botlen - 2*midlen,
- scratch + 2*midlen,
- c + 2*len - botlen - 2*midlen, 2*midlen);
- i = 2*len - botlen - 2*midlen - 1;
- while (carry) {
- assert(i >= 0);
- BignumADC(c[i], carry, c[i], 0, carry);
- i--;
- }
- #ifdef KARA_DEBUG
- printf("ab = 0x");
- for (i = 0; i < 2*len; i++) {
- printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
- }
- printf("\n");
- #endif
- } else {
- int i;
- BignumInt carry;
- const BignumInt *ap, *bp;
- BignumInt *cp, *cps;
- /*
- * Multiply in the ordinary O(N^2) way.
- */
- for (i = 0; i < 2 * len; i++)
- c[i] = 0;
- for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
- carry = 0;
- for (cp = cps, bp = b + len; cp--, bp-- > b ;)
- BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
- *cp = carry;
- }
- }
- }
- /*
- * Variant form of internal_mul used for the initial step of
- * Montgomery reduction. Only bothers outputting 'len' words
- * (everything above that is thrown away).
- */
- static void internal_mul_low(const BignumInt *a, const BignumInt *b,
- BignumInt *c, int len, BignumInt *scratch)
- {
- if (len > KARATSUBA_THRESHOLD) {
- int i;
- /*
- * Karatsuba-aware version of internal_mul_low. As before, we
- * express each input value as a shifted combination of two
- * halves:
- *
- * a = a_1 D + a_0
- * b = b_1 D + b_0
- *
- * Then the full product is, as before,
- *
- * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
- *
- * Provided we choose D on the large side (so that a_0 and b_0
- * are _at least_ as long as a_1 and b_1), we don't need the
- * topmost term at all, and we only need half of the middle
- * term. So there's no point in doing the proper Karatsuba
- * optimisation which computes the middle term using the top
- * one, because we'd take as long computing the top one as
- * just computing the middle one directly.
- *
- * So instead, we do a much more obvious thing: we call the
- * fully optimised internal_mul to compute a_0 b_0, and we
- * recursively call ourself to compute the _bottom halves_ of
- * a_1 b_0 and a_0 b_1, each of which we add into the result
- * in the obvious way.
- *
- * In other words, there's no actual Karatsuba _optimisation_
- * in this function; the only benefit in doing it this way is
- * that we call internal_mul proper for a large part of the
- * work, and _that_ can optimise its operation.
- */
- int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
- /*
- * Scratch space for the various bits and pieces we're going
- * to be adding together: we need botlen*2 words for a_0 b_0
- * (though we may end up throwing away its topmost word), and
- * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
- * to exactly 2*len.
- */
- /* a_0 b_0 */
- internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
- scratch + 2*len);
- /* a_1 b_0 */
- internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
- scratch + 2*len);
- /* a_0 b_1 */
- internal_mul_low(a + len - toplen, b, scratch, toplen,
- scratch + 2*len);
- /* Copy the bottom half of the big coefficient into place */
- for (i = 0; i < botlen; i++)
- c[toplen + i] = scratch[2*toplen + botlen + i];
- /* Add the two small coefficients, throwing away the returned carry */
- internal_add(scratch, scratch + toplen, scratch, toplen);
- /* And add that to the large coefficient, leaving the result in c. */
- internal_add(scratch, scratch + 2*toplen + botlen - toplen,
- c, toplen);
- } else {
- int i;
- BignumInt carry;
- const BignumInt *ap, *bp;
- BignumInt *cp, *cps;
- /*
- * Multiply in the ordinary O(N^2) way.
- */
- for (i = 0; i < len; i++)
- c[i] = 0;
- for (cps = c + len, ap = a + len; ap-- > a; cps--) {
- carry = 0;
- for (cp = cps, bp = b + len; bp--, cp-- > c ;)
- BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
- }
- }
- }
- /*
- * Montgomery reduction. Expects x to be a big-endian array of 2*len
- * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
- * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
- * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
- * x' < n.
- *
- * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
- * each, containing respectively n and the multiplicative inverse of
- * -n mod r.
- *
- * 'tmp' is an array of BignumInt used as scratch space, of length at
- * least 3*len + mul_compute_scratch(len).
- */
- static void monty_reduce(BignumInt *x, const BignumInt *n,
- const BignumInt *mninv, BignumInt *tmp, int len)
- {
- int i;
- BignumInt carry;
- /*
- * Multiply x by (-n)^{-1} mod r. This gives us a value m such
- * that mn is congruent to -x mod r. Hence, mn+x is an exact
- * multiple of r, and is also (obviously) congruent to x mod n.
- */
- internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
- /*
- * Compute t = (mn+x)/r in ordinary, non-modular, integer
- * arithmetic. By construction this is exact, and is congruent mod
- * n to x * r^{-1}, i.e. the answer we want.
- *
- * The following multiply leaves that answer in the _most_
- * significant half of the 'x' array, so then we must shift it
- * down.
- */
- internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
- carry = internal_add(x, tmp+len, x, 2*len);
- for (i = 0; i < len; i++)
- x[len + i] = x[i], x[i] = 0;
- /*
- * Reduce t mod n. This doesn't require a full-on division by n,
- * but merely a test and single optional subtraction, since we can
- * show that 0 <= t < 2n.
- *
- * Proof:
- * + we computed m mod r, so 0 <= m < r.
- * + so 0 <= mn < rn, obviously
- * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
- * + yielding 0 <= (mn+x)/r < 2n as required.
- */
- if (!carry) {
- for (i = 0; i < len; i++)
- if (x[len + i] != n[i])
- break;
- }
- if (carry || i >= len || x[len + i] > n[i])
- internal_sub(x+len, n, x+len, len);
- }
- static void internal_add_shifted(BignumInt *number,
- BignumInt n, int shift)
- {
- int word = 1 + (shift / BIGNUM_INT_BITS);
- int bshift = shift % BIGNUM_INT_BITS;
- BignumInt addendh, addendl;
- BignumCarry carry;
- addendl = n << bshift;
- addendh = (bshift == 0 ? 0 : n >> (BIGNUM_INT_BITS - bshift));
- assert(word <= number[0]);
- BignumADC(number[word], carry, number[word], addendl, 0);
- word++;
- if (!addendh && !carry)
- return;
- assert(word <= number[0]);
- BignumADC(number[word], carry, number[word], addendh, carry);
- word++;
- while (carry) {
- assert(word <= number[0]);
- BignumADC(number[word], carry, number[word], 0, carry);
- word++;
- }
- }
- static int bn_clz(BignumInt x)
- {
- /*
- * Count the leading zero bits in x. Equivalently, how far left
- * would we need to shift x to make its top bit set?
- *
- * Precondition: x != 0.
- */
- /* FIXME: would be nice to put in some compiler intrinsics under
- * ifdef here */
- int i, ret = 0;
- for (i = BIGNUM_INT_BITS / 2; i != 0; i >>= 1) {
- if ((x >> (BIGNUM_INT_BITS-i)) == 0) {
- x <<= i;
- ret += i;
- }
- }
- return ret;
- }
- static BignumInt reciprocal_word(BignumInt d)
- {
- BignumInt dshort, recip, prodh, prodl;
- int corrections;
- /*
- * Input: a BignumInt value d, with its top bit set.
- */
- assert(d >> (BIGNUM_INT_BITS-1) == 1);
- /*
- * Output: a value, shifted to fill a BignumInt, which is strictly
- * less than 1/(d+1), i.e. is an *under*-estimate (but by as
- * little as possible within the constraints) of the reciprocal of
- * any number whose first BIGNUM_INT_BITS bits match d.
- *
- * Ideally we'd like to _totally_ fill BignumInt, i.e. always
- * return a value with the top bit set. Unfortunately we can't
- * quite guarantee that for all inputs and also return a fixed
- * exponent. So instead we take our reciprocal to be
- * 2^(BIGNUM_INT_BITS*2-1) / d, so that it has the top bit clear
- * only in the exceptional case where d takes exactly the maximum
- * value BIGNUM_INT_MASK; in that case, the top bit is clear and
- * the next bit down is set.
- */
- /*
- * Start by computing a half-length version of the answer, by
- * straightforward division within a BignumInt.
- */
- dshort = (d >> (BIGNUM_INT_BITS/2)) + 1;
- recip = (BIGNUM_TOP_BIT + dshort - 1) / dshort;
- recip <<= BIGNUM_INT_BITS - BIGNUM_INT_BITS/2;
- /*
- * Newton-Raphson iteration to improve that starting reciprocal
- * estimate: take f(x) = d - 1/x, and then the N-R formula gives
- * x_new = x - f(x)/f'(x) = x - (d-1/x)/(1/x^2) = x(2-d*x). Or,
- * taking our fixed-point representation into account, take f(x)
- * to be d - K/x (where K = 2^(BIGNUM_INT_BITS*2-1) as discussed
- * above) and then we get (2K - d*x) * x/K.
- *
- * Newton-Raphson doubles the number of correct bits at every
- * iteration, and the initial division above already gave us half
- * the output word, so it's only worth doing one iteration.
- */
- BignumMULADD(prodh, prodl, recip, d, recip);
- prodl = ~prodl;
- prodh = ~prodh;
- {
- BignumCarry c;
- BignumADC(prodl, c, prodl, 1, 0);
- prodh += c;
- }
- BignumMUL(prodh, prodl, prodh, recip);
- recip = (prodh << 1) | (prodl >> (BIGNUM_INT_BITS-1));
- /*
- * Now make sure we have the best possible reciprocal estimate,
- * before we return it. We might have been off by a handful either
- * way - not enough to bother with any better-thought-out kind of
- * correction loop.
- */
- BignumMULADD(prodh, prodl, recip, d, recip);
- corrections = 0;
- if (prodh >= BIGNUM_TOP_BIT) {
- do {
- BignumCarry c = 1;
- BignumADC(prodl, c, prodl, ~d, c); prodh += BIGNUM_INT_MASK + c;
- recip--;
- corrections++;
- } while (prodh >= ((BignumInt)1 << (BIGNUM_INT_BITS-1)));
- } else {
- while (1) {
- BignumInt newprodh, newprodl;
- BignumCarry c = 0;
- BignumADC(newprodl, c, prodl, d, c); newprodh = prodh + c;
- if (newprodh >= BIGNUM_TOP_BIT)
- break;
- prodh = newprodh;
- prodl = newprodl;
- recip++;
- corrections++;
- }
- }
- return recip;
- }
- /*
- * Compute a = a % m.
- * Input in first alen words of a and first mlen words of m.
- * Output in first alen words of a
- * (of which first alen-mlen words will be zero).
- * Quotient is accumulated in the `quotient' array, which is a Bignum
- * rather than the internal bigendian format.
- *
- * 'recip' must be the result of calling reciprocal_word() on the top
- * BIGNUM_INT_BITS of the modulus (denoted m0 in comments below), with
- * the topmost set bit normalised to the MSB of the input to
- * reciprocal_word. 'rshift' is how far left the top nonzero word of
- * the modulus had to be shifted to set that top bit.
- */
- static void internal_mod(BignumInt *a, int alen,
- BignumInt *m, int mlen,
- BignumInt *quot, BignumInt recip, int rshift)
- {
- int i, k;
- #ifdef DIVISION_DEBUG
- {
- int d;
- printf("start division, m=0x");
- for (d = 0; d < mlen; d++)
- printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)m[d]);
- printf(", recip=%#0*llx, rshift=%d\n",
- BIGNUM_INT_BITS/4, (unsigned long long)recip, rshift);
- }
- #endif
- /*
- * Repeatedly use that reciprocal estimate to get a decent number
- * of quotient bits, and subtract off the resulting multiple of m.
- *
- * Normally we expect to terminate this loop by means of finding
- * out q=0 part way through, but one way in which we might not get
- * that far in the first place is if the input a is actually zero,
- * in which case we'll discard zero words from the front of a
- * until we reach the termination condition in the for statement
- * here.
- */
- for (i = 0; i <= alen - mlen ;) {
- BignumInt product;
- BignumInt aword, q;
- int shift, full_bitoffset, bitoffset, wordoffset;
- #ifdef DIVISION_DEBUG
- {
- int d;
- printf("main loop, a=0x");
- for (d = 0; d < alen; d++)
- printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
- printf("\n");
- }
- #endif
- if (a[i] == 0) {
- #ifdef DIVISION_DEBUG
- printf("zero word at i=%d\n", i);
- #endif
- i++;
- continue;
- }
- aword = a[i];
- shift = bn_clz(aword);
- aword <<= shift;
- if (shift > 0 && i+1 < alen)
- aword |= a[i+1] >> (BIGNUM_INT_BITS - shift);
- {
- BignumInt unused;
- BignumMUL(q, unused, recip, aword);
- (void)unused;
- }
- #ifdef DIVISION_DEBUG
- printf("i=%d, aword=%#0*llx, shift=%d, q=%#0*llx\n",
- i, BIGNUM_INT_BITS/4, (unsigned long long)aword,
- shift, BIGNUM_INT_BITS/4, (unsigned long long)q);
- #endif
- /*
- * Work out the right bit and word offsets to use when
- * subtracting q*m from a.
- *
- * aword was taken from a[i], which means its LSB was at bit
- * position (alen-1-i) * BIGNUM_INT_BITS. But then we shifted
- * it left by 'shift', so now the low bit of aword corresponds
- * to bit position (alen-1-i) * BIGNUM_INT_BITS - shift, i.e.
- * aword is approximately equal to a / 2^(that).
- *
- * m0 comes from the top word of mod, so its LSB is at bit
- * position (mlen-1) * BIGNUM_INT_BITS - rshift, i.e. it can
- * be considered to be m / 2^(that power). 'recip' is the
- * reciprocal of m0, times 2^(BIGNUM_INT_BITS*2-1), i.e. it's
- * about 2^((mlen+1) * BIGNUM_INT_BITS - rshift - 1) / m.
- *
- * Hence, recip * aword is approximately equal to the product
- * of those, which simplifies to
- *
- * a/m * 2^((mlen+2+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
- *
- * But we've also shifted recip*aword down by BIGNUM_INT_BITS
- * to form q, so we have
- *
- * q ~= a/m * 2^((mlen+1+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
- *
- * and hence, when we now compute q*m, it will be about
- * a*2^(all that lot), i.e. the negation of that expression is
- * how far left we have to shift the product q*m to make it
- * approximately equal to a.
- */
- full_bitoffset = -((mlen+1+i-alen)*BIGNUM_INT_BITS + shift-rshift-1);
- #ifdef DIVISION_DEBUG
- printf("full_bitoffset=%d\n", full_bitoffset);
- #endif
- if (full_bitoffset < 0) {
- /*
- * If we find ourselves needing to shift q*m _right_, that
- * means we've reached the bottom of the quotient. Clip q
- * so that its right shift becomes zero, and if that means
- * q becomes _actually_ zero, this loop is done.
- */
- if (full_bitoffset <= -BIGNUM_INT_BITS)
- break;
- q >>= -full_bitoffset;
- full_bitoffset = 0;
- if (!q)
- break;
- #ifdef DIVISION_DEBUG
- printf("now full_bitoffset=%d, q=%#0*llx\n",
- full_bitoffset, BIGNUM_INT_BITS/4, (unsigned long long)q);
- #endif
- }
- wordoffset = full_bitoffset / BIGNUM_INT_BITS;
- bitoffset = full_bitoffset % BIGNUM_INT_BITS;
- #ifdef DIVISION_DEBUG
- printf("wordoffset=%d, bitoffset=%d\n", wordoffset, bitoffset);
- #endif
- /* wordoffset as computed above is the offset between the LSWs
- * of m and a. But in fact m and a are stored MSW-first, so we
- * need to adjust it to be the offset between the actual array
- * indices, and flip the sign too. */
- wordoffset = alen - mlen - wordoffset;
- if (bitoffset == 0) {
- BignumCarry c = 1;
- BignumInt prev_hi_word = 0;
- for (k = mlen - 1; wordoffset+k >= i; k--) {
- BignumInt mword = k<0 ? 0 : m[k];
- BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
- #ifdef DIVISION_DEBUG
- printf(" aligned sub: product word for m[%d] = %#0*llx\n",
- k, BIGNUM_INT_BITS/4,
- (unsigned long long)product);
- #endif
- #ifdef DIVISION_DEBUG
- printf(" aligned sub: subtrahend for a[%d] = %#0*llx\n",
- wordoffset+k, BIGNUM_INT_BITS/4,
- (unsigned long long)product);
- #endif
- BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~product, c);
- }
- } else {
- BignumInt add_word = 0;
- BignumInt c = 1;
- BignumInt prev_hi_word = 0;
- for (k = mlen - 1; wordoffset+k >= i; k--) {
- BignumInt mword = k<0 ? 0 : m[k];
- BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
- #ifdef DIVISION_DEBUG
- printf(" unaligned sub: product word for m[%d] = %#0*llx\n",
- k, BIGNUM_INT_BITS/4,
- (unsigned long long)product);
- #endif
- add_word |= product << bitoffset;
- #ifdef DIVISION_DEBUG
- printf(" unaligned sub: subtrahend for a[%d] = %#0*llx\n",
- wordoffset+k,
- BIGNUM_INT_BITS/4, (unsigned long long)add_word);
- #endif
- BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~add_word, c);
- add_word = product >> (BIGNUM_INT_BITS - bitoffset);
- }
- }
- if (quot) {
- #ifdef DIVISION_DEBUG
- printf("adding quotient word %#0*llx << %d\n",
- BIGNUM_INT_BITS/4, (unsigned long long)q, full_bitoffset);
- #endif
- internal_add_shifted(quot, q, full_bitoffset);
- #ifdef DIVISION_DEBUG
- {
- int d;
- printf("now quot=0x");
- for (d = quot[0]; d > 0; d--)
- printf("%0*llx", BIGNUM_INT_BITS/4,
- (unsigned long long)quot[d]);
- printf("\n");
- }
- #endif
- }
- }
- #ifdef DIVISION_DEBUG
- {
- int d;
- printf("end main loop, a=0x");
- for (d = 0; d < alen; d++)
- printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
- if (quot) {
- printf(", quot=0x");
- for (d = quot[0]; d > 0; d--)
- printf("%0*llx", BIGNUM_INT_BITS/4,
- (unsigned long long)quot[d]);
- }
- printf("\n");
- }
- #endif
- /*
- * The above loop should terminate with the remaining value in a
- * being strictly less than 2*m (if a >= 2*m then we should always
- * have managed to get a nonzero q word), but we can't guarantee
- * that it will be strictly less than m: consider a case where the
- * remainder is 1, and another where the remainder is m-1. By the
- * time a contains a value that's _about m_, you clearly can't
- * distinguish those cases by looking at only the top word of a -
- * you have to go all the way down to the bottom before you find
- * out whether it's just less or just more than m.
- *
- * Hence, we now do a final fixup in which we subtract one last
- * copy of m, or don't, accordingly. We should never have to
- * subtract more than one copy of m here.
- */
- for (i = 0; i < alen; i++) {
- /* Compare a with m, word by word, from the MSW down. As soon
- * as we encounter a difference, we know whether we need the
- * fixup. */
- int mindex = mlen-alen+i;
- BignumInt mword = mindex < 0 ? 0 : m[mindex];
- if (a[i] < mword) {
- #ifdef DIVISION_DEBUG
- printf("final fixup not needed, a < m\n");
- #endif
- return;
- } else if (a[i] > mword) {
- #ifdef DIVISION_DEBUG
- printf("final fixup is needed, a > m\n");
- #endif
- break;
- }
- /* If neither of those cases happened, the words are the same,
- * so keep going and look at the next one. */
- }
- #ifdef DIVISION_DEBUG
- if (i == mlen) /* if we printed neither of the above diagnostics */
- printf("final fixup is needed, a == m\n");
- #endif
- /*
- * If we got here without returning, then a >= m, so we must
- * subtract m, and increment the quotient.
- */
- {
- BignumCarry c = 1;
- for (i = alen - 1; i >= 0; i--) {
- int mindex = mlen-alen+i;
- BignumInt mword = mindex < 0 ? 0 : m[mindex];
- BignumADC(a[i], c, a[i], ~mword, c);
- }
- }
- if (quot)
- internal_add_shifted(quot, 1, 0);
- #ifdef DIVISION_DEBUG
- {
- int d;
- printf("after final fixup, a=0x");
- for (d = 0; d < alen; d++)
- printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
- if (quot) {
- printf(", quot=0x");
- for (d = quot[0]; d > 0; d--)
- printf("%0*llx", BIGNUM_INT_BITS/4,
- (unsigned long long)quot[d]);
- }
- printf("\n");
- }
- #endif
- }
- /*
- * Compute (base ^ exp) % mod, the pedestrian way.
- */
- Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
- {
- BignumInt *a, *b, *n, *m, *scratch;
- BignumInt recip;
- int rshift;
- int mlen, scratchlen, i, j;
- Bignum base, result;
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
- /*
- * Make sure the base is smaller than the modulus, by reducing
- * it modulo the modulus if not.
- */
- base = bigmod(base_in, mod);
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
- /* Allocate n of size mlen, copy base to n */
- n = snewn(mlen, BignumInt);
- i = mlen - base[0];
- for (j = 0; j < i; j++)
- n[j] = 0;
- for (j = 0; j < (int)base[0]; j++)
- n[i + j] = base[base[0] - j];
- /* Allocate a and b of size 2*mlen. Set a = 1 */
- a = snewn(2 * mlen, BignumInt);
- b = snewn(2 * mlen, BignumInt);
- for (i = 0; i < 2 * mlen; i++)
- a[i] = 0;
- a[2 * mlen - 1] = 1;
- /* Scratch space for multiplies */
- scratchlen = mul_compute_scratch(mlen);
- scratch = snewn(scratchlen, BignumInt);
- /* Skip leading zero bits of exp. */
- i = 0;
- j = BIGNUM_INT_BITS-1;
- while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
- j--;
- if (j < 0) {
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- }
- /* Compute reciprocal of the top full word of the modulus */
- {
- BignumInt m0 = m[0];
- rshift = bn_clz(m0);
- if (rshift) {
- m0 <<= rshift;
- if (mlen > 1)
- m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
- }
- recip = reciprocal_word(m0);
- }
- /* Main computation */
- while (i < (int)exp[0]) {
- while (j >= 0) {
- internal_mul(a + mlen, a + mlen, b, mlen, scratch);
- internal_mod(b, mlen * 2, m, mlen, NULL, recip, rshift);
- if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
- internal_mul(b + mlen, n, a, mlen, scratch);
- internal_mod(a, mlen * 2, m, mlen, NULL, recip, rshift);
- } else {
- BignumInt *t;
- t = a;
- a = b;
- b = t;
- }
- j--;
- }
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- /* Copy result to buffer */
- result = newbn(mod[0]);
- for (i = 0; i < mlen; i++)
- result[result[0] - i] = a[i + mlen];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
- /* Free temporary arrays */
- smemclr(a, 2 * mlen * sizeof(*a));
- sfree(a);
- smemclr(scratch, scratchlen * sizeof(*scratch));
- sfree(scratch);
- smemclr(b, 2 * mlen * sizeof(*b));
- sfree(b);
- smemclr(m, mlen * sizeof(*m));
- sfree(m);
- smemclr(n, mlen * sizeof(*n));
- sfree(n);
- freebn(base);
- return result;
- }
- /*
- * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
- * technique where possible, falling back to modpow_simple otherwise.
- */
- Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
- {
- BignumInt *a, *b, *x, *n, *mninv, *scratch;
- int len, scratchlen, i, j;
- Bignum base, base2, r, rn, inv, result;
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
- /*
- * mod had better be odd, or we can't do Montgomery multiplication
- * using a power of two at all.
- */
- if (!(mod[1] & 1))
- return modpow_simple(base_in, exp, mod);
- /*
- * Make sure the base is smaller than the modulus, by reducing
- * it modulo the modulus if not.
- */
- base = bigmod(base_in, mod);
- /*
- * Compute the inverse of n mod r, for monty_reduce. (In fact we
- * want the inverse of _minus_ n mod r, but we'll sort that out
- * below.)
- */
- len = mod[0];
- r = bn_power_2(BIGNUM_INT_BITS * len);
- inv = modinv(mod, r);
- assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */
- /*
- * Multiply the base by r mod n, to get it into Montgomery
- * representation.
- */
- base2 = modmul(base, r, mod);
- freebn(base);
- base = base2;
- rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
- freebn(r); /* won't need this any more */
- /*
- * Set up internal arrays of the right lengths, in big-endian
- * format, containing the base, the modulus, and the modulus's
- * inverse.
- */
- n = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- n[len - 1 - j] = mod[j + 1];
- mninv = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
- freebn(inv); /* we don't need this copy of it any more */
- /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
- x = snewn(len, BignumInt);
- for (j = 0; j < len; j++)
- x[j] = 0;
- internal_sub(x, mninv, mninv, len);
- /* x = snewn(len, BignumInt); */ /* already done above */
- for (j = 0; j < len; j++)
- x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
- freebn(base); /* we don't need this copy of it any more */
- a = snewn(2*len, BignumInt);
- b = snewn(2*len, BignumInt);
- for (j = 0; j < len; j++)
- a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
- freebn(rn);
- /* Scratch space for multiplies */
- scratchlen = 3*len + mul_compute_scratch(len);
- scratch = snewn(scratchlen, BignumInt);
- /* Skip leading zero bits of exp. */
- i = 0;
- j = BIGNUM_INT_BITS-1;
- while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
- j--;
- if (j < 0) {
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- }
- /* Main computation */
- while (i < (int)exp[0]) {
- while (j >= 0) {
- internal_mul(a + len, a + len, b, len, scratch);
- monty_reduce(b, n, mninv, scratch, len);
- if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
- internal_mul(b + len, x, a, len, scratch);
- monty_reduce(a, n, mninv, scratch, len);
- } else {
- BignumInt *t;
- t = a;
- a = b;
- b = t;
- }
- j--;
- }
- i++;
- j = BIGNUM_INT_BITS-1;
- }
- /*
- * Final monty_reduce to get back from the adjusted Montgomery
- * representation.
- */
- monty_reduce(a, n, mninv, scratch, len);
- /* Copy result to buffer */
- result = newbn(mod[0]);
- for (i = 0; i < len; i++)
- result[result[0] - i] = a[i + len];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
- /* Free temporary arrays */
- smemclr(scratch, scratchlen * sizeof(*scratch));
- sfree(scratch);
- smemclr(a, 2 * len * sizeof(*a));
- sfree(a);
- smemclr(b, 2 * len * sizeof(*b));
- sfree(b);
- smemclr(mninv, len * sizeof(*mninv));
- sfree(mninv);
- smemclr(n, len * sizeof(*n));
- sfree(n);
- smemclr(x, len * sizeof(*x));
- sfree(x);
- return result;
- }
- /*
- * Compute (p * q) % mod.
- * The most significant word of mod MUST be non-zero.
- * We assume that the result array is the same size as the mod array.
- */
- Bignum modmul(Bignum p, Bignum q, Bignum mod)
- {
- BignumInt *a, *n, *m, *o, *scratch;
- BignumInt recip;
- int rshift, scratchlen;
- int pqlen, mlen, rlen, i, j;
- Bignum result;
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
- pqlen = (p[0] > q[0] ? p[0] : q[0]);
- /*
- * Make sure that we're allowing enough space. The shifting below
- * will underflow the vectors we allocate if pqlen is too small.
- */
- if (2*pqlen <= mlen)
- pqlen = mlen/2 + 1;
- /* Allocate n of size pqlen, copy p to n */
- n = snewn(pqlen, BignumInt);
- i = pqlen - p[0];
- for (j = 0; j < i; j++)
- n[j] = 0;
- for (j = 0; j < (int)p[0]; j++)
- n[i + j] = p[p[0] - j];
- /* Allocate o of size pqlen, copy q to o */
- o = snewn(pqlen, BignumInt);
- i = pqlen - q[0];
- for (j = 0; j < i; j++)
- o[j] = 0;
- for (j = 0; j < (int)q[0]; j++)
- o[i + j] = q[q[0] - j];
- /* Allocate a of size 2*pqlen for result */
- a = snewn(2 * pqlen, BignumInt);
- /* Scratch space for multiplies */
- scratchlen = mul_compute_scratch(pqlen);
- scratch = snewn(scratchlen, BignumInt);
- /* Compute reciprocal of the top full word of the modulus */
- {
- BignumInt m0 = m[0];
- rshift = bn_clz(m0);
- if (rshift) {
- m0 <<= rshift;
- if (mlen > 1)
- m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
- }
- recip = reciprocal_word(m0);
- }
- /* Main computation */
- internal_mul(n, o, a, pqlen, scratch);
- internal_mod(a, pqlen * 2, m, mlen, NULL, recip, rshift);
- /* Copy result to buffer */
- rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
- result = newbn(rlen);
- for (i = 0; i < rlen; i++)
- result[result[0] - i] = a[i + 2 * pqlen - rlen];
- while (result[0] > 1 && result[result[0]] == 0)
- result[0]--;
- /* Free temporary arrays */
- smemclr(scratch, scratchlen * sizeof(*scratch));
- sfree(scratch);
- smemclr(a, 2 * pqlen * sizeof(*a));
- sfree(a);
- smemclr(m, mlen * sizeof(*m));
- sfree(m);
- smemclr(n, pqlen * sizeof(*n));
- sfree(n);
- smemclr(o, pqlen * sizeof(*o));
- sfree(o);
- return result;
- }
- Bignum modsub(const Bignum a, const Bignum b, const Bignum n)
- {
- Bignum a1, b1, ret;
- if (bignum_cmp(a, n) >= 0) a1 = bigmod(a, n);
- else a1 = a;
- if (bignum_cmp(b, n) >= 0) b1 = bigmod(b, n);
- else b1 = b;
- if (bignum_cmp(a1, b1) >= 0) /* a >= b */
- {
- ret = bigsub(a1, b1);
- }
- else
- {
- /* Handle going round the corner of the modulus without having
- * negative support in Bignum */
- Bignum tmp = bigsub(n, b1);
- assert(tmp);
- ret = bigadd(tmp, a1);
- freebn(tmp);
- }
- if (a != a1) freebn(a1);
- if (b != b1) freebn(b1);
- return ret;
- }
- /*
- * Compute p % mod.
- * The most significant word of mod MUST be non-zero.
- * We assume that the result array is the same size as the mod array.
- * We optionally write out a quotient if `quotient' is non-NULL.
- * We can avoid writing out the result if `result' is NULL.
- */
- static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
- {
- BignumInt *n, *m;
- BignumInt recip;
- int rshift;
- int plen, mlen, i, j;
- /*
- * The most significant word of mod needs to be non-zero. It
- * should already be, but let's make sure.
- */
- assert(mod[mod[0]] != 0);
- /* Allocate m of size mlen, copy mod to m */
- /* We use big endian internally */
- mlen = mod[0];
- m = snewn(mlen, BignumInt);
- for (j = 0; j < mlen; j++)
- m[j] = mod[mod[0] - j];
- plen = p[0];
- /* Ensure plen > mlen */
- if (plen <= mlen)
- plen = mlen + 1;
- /* Allocate n of size plen, copy p to n */
- n = snewn(plen, BignumInt);
- for (j = 0; j < plen; j++)
- n[j] = 0;
- for (j = 1; j <= (int)p[0]; j++)
- n[plen - j] = p[j];
- /* Compute reciprocal of the top full word of the modulus */
- {
- BignumInt m0 = m[0];
- rshift = bn_clz(m0);
- if (rshift) {
- m0 <<= rshift;
- if (mlen > 1)
- m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
- }
- recip = reciprocal_word(m0);
- }
- /* Main computation */
- internal_mod(n, plen, m, mlen, quotient, recip, rshift);
- /* Copy result to buffer */
- if (result) {
- for (i = 1; i <= (int)result[0]; i++) {
- int j = plen - i;
- result[i] = j >= 0 ? n[j] : 0;
- }
- }
- /* Free temporary arrays */
- smemclr(m, mlen * sizeof(*m));
- sfree(m);
- smemclr(n, plen * sizeof(*n));
- sfree(n);
- }
- /*
- * Decrement a number.
- */
- void decbn(Bignum bn)
- {
- int i = 1;
- while (i < (int)bn[0] && bn[i] == 0)
- bn[i++] = BIGNUM_INT_MASK;
- bn[i]--;
- }
- Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
- {
- Bignum result;
- int w, i;
- assert(nbytes >= 0 && nbytes < INT_MAX/8);
- w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
- result = newbn(w);
- for (i = 1; i <= w; i++)
- result[i] = 0;
- for (i = nbytes; i--;) {
- unsigned char byte = *data++;
- result[1 + i / BIGNUM_INT_BYTES] |=
- (BignumInt)byte << (8*i % BIGNUM_INT_BITS);
- }
- bn_restore_invariant(result);
- return result;
- }
- Bignum bignum_from_bytes_le(const unsigned char *data, int nbytes)
- {
- Bignum result;
- int w, i;
- assert(nbytes >= 0 && nbytes < INT_MAX/8);
- w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
- result = newbn(w);
- for (i = 1; i <= w; i++)
- result[i] = 0;
- for (i = 0; i < nbytes; ++i) {
- unsigned char byte = *data++;
- result[1 + i / BIGNUM_INT_BYTES] |=
- (BignumInt)byte << (8*i % BIGNUM_INT_BITS);
- }
- bn_restore_invariant(result);
- return result;
- }
- Bignum bignum_from_decimal(const char *decimal)
- {
- Bignum result = copybn(Zero);
- while (*decimal) {
- Bignum tmp, tmp2;
- if (!isdigit((unsigned char)*decimal)) {
- freebn(result);
- return 0;
- }
- tmp = bigmul(result, Ten);
- tmp2 = bignum_from_long(*decimal - '0');
- result = bigadd(tmp, tmp2);
- freebn(tmp);
- freebn(tmp2);
- decimal++;
- }
- return result;
- }
- Bignum bignum_random_in_range(const Bignum lower, const Bignum upper)
- {
- Bignum ret = NULL;
- unsigned char *bytes;
- int upper_len = bignum_bitcount(upper);
- int upper_bytes = upper_len / 8;
- int upper_bits = upper_len % 8;
- if (upper_bits) ++upper_bytes;
- bytes = snewn(upper_bytes, unsigned char);
- do {
- int i;
- if (ret) freebn(ret);
- for (i = 0; i < upper_bytes; ++i)
- {
- bytes[i] = (unsigned char)random_byte();
- }
- /* Mask the top to reduce failure rate to 50/50 */
- if (upper_bits)
- {
- bytes[i - 1] &= 0xFF >> (8 - upper_bits);
- }
- ret = bignum_from_bytes(bytes, upper_bytes);
- } while (bignum_cmp(ret, lower) < 0 || bignum_cmp(ret, upper) > 0);
- smemclr(bytes, upper_bytes);
- sfree(bytes);
- return ret;
- }
- /*
- * Read an SSH-1-format bignum from a data buffer. Return the number
- * of bytes consumed, or -1 if there wasn't enough data.
- */
- int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
- {
- const unsigned char *p = data;
- int i;
- int w, b;
- if (len < 2)
- return -1;
- w = 0;
- for (i = 0; i < 2; i++)
- w = (w << 8) + *p++;
- b = (w + 7) / 8; /* bits -> bytes */
- if (len < b+2)
- return -1;
- if (!result) /* just return length */
- return b + 2;
- *result = bignum_from_bytes(p, b);
- return p + b - data;
- }
- /*
- * Return the bit count of a bignum, for SSH-1 encoding.
- */
- int bignum_bitcount(Bignum bn)
- {
- int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
- while (bitcount >= 0
- && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
- return bitcount + 1;
- }
- /*
- * Return the byte length of a bignum when SSH-1 encoded.
- */
- int ssh1_bignum_length(Bignum bn)
- {
- return 2 + (bignum_bitcount(bn) + 7) / 8;
- }
- /*
- * Return the byte length of a bignum when SSH-2 encoded.
- */
- int ssh2_bignum_length(Bignum bn)
- {
- return 4 + (bignum_bitcount(bn) + 8) / 8;
- }
- /*
- * Return a byte from a bignum; 0 is least significant, etc.
- */
- int bignum_byte(Bignum bn, int i)
- {
- if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))
- return 0; /* beyond the end */
- else
- return (bn[i / BIGNUM_INT_BYTES + 1] >>
- ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
- }
- /*
- * Return a bit from a bignum; 0 is least significant, etc.
- */
- int bignum_bit(Bignum bn, int i)
- {
- if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))
- return 0; /* beyond the end */
- else
- return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
- }
- /*
- * Set a bit in a bignum; 0 is least significant, etc.
- */
- void bignum_set_bit(Bignum bn, int bitnum, int value)
- {
- if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) {
- if (value) abort(); /* beyond the end */
- } else {
- int v = bitnum / BIGNUM_INT_BITS + 1;
- BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS);
- if (value)
- bn[v] |= mask;
- else
- bn[v] &= ~mask;
- }
- }
- /*
- * Write a SSH-1-format bignum into a buffer. It is assumed the
- * buffer is big enough. Returns the number of bytes used.
- */
- int ssh1_write_bignum(void *data, Bignum bn)
- {
- unsigned char *p = data;
- int len = ssh1_bignum_length(bn);
- int i;
- int bitc = bignum_bitcount(bn);
- *p++ = (bitc >> 8) & 0xFF;
- *p++ = (bitc) & 0xFF;
- for (i = len - 2; i--;)
- *p++ = bignum_byte(bn, i);
- return len;
- }
- /*
- * Compare two bignums. Returns like strcmp.
- */
- int bignum_cmp(Bignum a, Bignum b)
- {
- int amax = a[0], bmax = b[0];
- int i;
- /* Annoyingly we have two representations of zero */
- if (amax == 1 && a[amax] == 0)
- amax = 0;
- if (bmax == 1 && b[bmax] == 0)
- bmax = 0;
- assert(amax == 0 || a[amax] != 0);
- assert(bmax == 0 || b[bmax] != 0);
- i = (amax > bmax ? amax : bmax);
- while (i) {
- BignumInt aval = (i > amax ? 0 : a[i]);
- BignumInt bval = (i > bmax ? 0 : b[i]);
- if (aval < bval)
- return -1;
- if (aval > bval)
- return +1;
- i--;
- }
- return 0;
- }
- /*
- * Right-shift one bignum to form another.
- */
- Bignum bignum_rshift(Bignum a, int shift)
- {
- Bignum ret;
- int i, shiftw, shiftb, shiftbb, bits;
- BignumInt ai, ai1;
- assert(shift >= 0);
- bits = bignum_bitcount(a) - shift;
- ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
- if (ret) {
- shiftw = shift / BIGNUM_INT_BITS;
- shiftb = shift % BIGNUM_INT_BITS;
- shiftbb = BIGNUM_INT_BITS - shiftb;
- ai1 = a[shiftw + 1];
- for (i = 1; i <= (int)ret[0]; i++) {
- ai = ai1;
- ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
- ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
- }
- }
- return ret;
- }
- /*
- * Left-shift one bignum to form another.
- */
- Bignum bignum_lshift(Bignum a, int shift)
- {
- Bignum ret;
- int bits, shiftWords, shiftBits;
- assert(shift >= 0);
- bits = bignum_bitcount(a) + shift;
- ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
- shiftWords = shift / BIGNUM_INT_BITS;
- shiftBits = shift % BIGNUM_INT_BITS;
- if (shiftBits == 0)
- {
- memcpy(&ret[1 + shiftWords], &a[1], sizeof(BignumInt) * a[0]);
- }
- else
- {
- int i;
- BignumInt carry = 0;
- /* Remember that Bignum[0] is length, so add 1 */
- for (i = shiftWords + 1; i < ((int)a[0]) + shiftWords + 1; ++i)
- {
- BignumInt from = a[i - shiftWords];
- ret[i] = (from << shiftBits) | carry;
- carry = from >> (BIGNUM_INT_BITS - shiftBits);
- }
- if (carry) ret[i] = carry;
- }
- return ret;
- }
- /*
- * Non-modular multiplication and addition.
- */
- Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
- {
- int alen = a[0], blen = b[0];
- int mlen = (alen > blen ? alen : blen);
- int rlen, i, maxspot;
- int wslen;
- BignumInt *workspace;
- Bignum ret;
- /* mlen space for a, mlen space for b, 2*mlen for result,
- * plus scratch space for multiplication */
- wslen = mlen * 4 + mul_compute_scratch(mlen);
- workspace = snewn(wslen, BignumInt);
- for (i = 0; i < mlen; i++) {
- workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
- workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
- }
- internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
- workspace + 2 * mlen, mlen, workspace + 4 * mlen);
- /* now just copy the result back */
- rlen = alen + blen + 1;
- if (addend && rlen <= (int)addend[0])
- rlen = addend[0] + 1;
- ret = newbn(rlen);
- maxspot = 0;
- for (i = 1; i <= (int)ret[0]; i++) {
- ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
- if (ret[i] != 0)
- maxspot = i;
- }
- ret[0] = maxspot;
- /* now add in the addend, if any */
- if (addend) {
- BignumCarry carry = 0;
- for (i = 1; i <= rlen; i++) {
- BignumInt retword = (i <= (int)ret[0] ? ret[i] : 0);
- BignumInt addword = (i <= (int)addend[0] ? addend[i] : 0);
- BignumADC(ret[i], carry, retword, addword, carry);
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- }
- ret[0] = maxspot;
- smemclr(workspace, wslen * sizeof(*workspace));
- sfree(workspace);
- return ret;
- }
- /*
- * Non-modular multiplication.
- */
- Bignum bigmul(Bignum a, Bignum b)
- {
- return bigmuladd(a, b, NULL);
- }
- /*
- * Simple addition.
- */
- Bignum bigadd(Bignum a, Bignum b)
- {
- int alen = a[0], blen = b[0];
- int rlen = (alen > blen ? alen : blen) + 1;
- int i, maxspot;
- Bignum ret;
- BignumCarry carry;
- ret = newbn(rlen);
- carry = 0;
- maxspot = 0;
- for (i = 1; i <= rlen; i++) {
- BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
- BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
- BignumADC(ret[i], carry, aword, bword, carry);
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- ret[0] = maxspot;
- return ret;
- }
- /*
- * Subtraction. Returns a-b, or NULL if the result would come out
- * negative (recall that this entire bignum module only handles
- * positive numbers).
- */
- Bignum bigsub(Bignum a, Bignum b)
- {
- int alen = a[0], blen = b[0];
- int rlen = (alen > blen ? alen : blen);
- int i, maxspot;
- Bignum ret;
- BignumCarry carry;
- ret = newbn(rlen);
- carry = 1;
- maxspot = 0;
- for (i = 1; i <= rlen; i++) {
- BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
- BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
- BignumADC(ret[i], carry, aword, ~bword, carry);
- if (ret[i] != 0 && i > maxspot)
- maxspot = i;
- }
- ret[0] = maxspot;
- if (!carry) {
- freebn(ret);
- return NULL;
- }
- return ret;
- }
- /*
- * Create a bignum which is the bitmask covering another one. That
- * is, the smallest integer which is >= N and is also one less than
- * a power of two.
- */
- Bignum bignum_bitmask(Bignum n)
- {
- Bignum ret = copybn(n);
- int i;
- BignumInt j;
- i = ret[0];
- while (n[i] == 0 && i > 0)
- i--;
- if (i <= 0)
- return ret; /* input was zero */
- j = 1;
- while (j < n[i])
- j = 2 * j + 1;
- ret[i] = j;
- while (--i > 0)
- ret[i] = BIGNUM_INT_MASK;
- return ret;
- }
- /*
- * Convert an unsigned long into a bignum.
- */
- Bignum bignum_from_long(unsigned long n)
- {
- const int maxwords =
- (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
- Bignum ret;
- int i;
- ret = newbn(maxwords);
- ret[0] = 0;
- for (i = 0; i < maxwords; i++) {
- ret[i+1] = n >> (i * BIGNUM_INT_BITS);
- if (ret[i+1] != 0)
- ret[0] = i+1;
- }
- return ret;
- }
- /*
- * Add a long to a bignum.
- */
- Bignum bignum_add_long(Bignum number, unsigned long n)
- {
- const int maxwords =
- (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
- Bignum ret;
- int words, i;
- BignumCarry carry;
- words = number[0];
- if (words < maxwords)
- words = maxwords;
- words++;
- ret = newbn(words);
- carry = 0;
- ret[0] = 0;
- for (i = 0; i < words; i++) {
- BignumInt nword = (i < maxwords ? n >> (i * BIGNUM_INT_BITS) : 0);
- BignumInt numword = (i < number[0] ? number[i+1] : 0);
- BignumADC(ret[i+1], carry, numword, nword, carry);
- if (ret[i+1] != 0)
- ret[0] = i+1;
- }
- return ret;
- }
- /*
- * Compute the residue of a bignum, modulo a (max 16-bit) short.
- */
- unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
- {
- unsigned long mod = modulus, r = 0;
- /* Precompute (BIGNUM_INT_MASK+1) % mod */
- unsigned long base_r = (BIGNUM_INT_MASK - modulus + 1) % mod;
- int i;
- for (i = number[0]; i > 0; i--) {
- /*
- * Conceptually, ((r << BIGNUM_INT_BITS) + number[i]) % mod
- */
- r = ((r * base_r) + (number[i] % mod)) % mod;
- }
- return (unsigned short) r;
- }
- #ifdef DEBUG
- void diagbn(char *prefix, Bignum md)
- {
- int i, nibbles, morenibbles;
- static const char hex[] = "0123456789ABCDEF";
- debug(("%s0x", prefix ? prefix : ""));
- nibbles = (3 + bignum_bitcount(md)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- morenibbles = 4 * md[0] - nibbles;
- for (i = 0; i < morenibbles; i++)
- debug(("-"));
- for (i = nibbles; i--;)
- debug(("%c",
- hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
- if (prefix)
- debug(("\n"));
- }
- #endif
- /*
- * Simple division.
- */
- Bignum bigdiv(Bignum a, Bignum b)
- {
- Bignum q = newbn(a[0]);
- bigdivmod(a, b, NULL, q);
- while (q[0] > 1 && q[q[0]] == 0)
- q[0]--;
- return q;
- }
- /*
- * Simple remainder.
- */
- Bignum bigmod(Bignum a, Bignum b)
- {
- Bignum r = newbn(b[0]);
- bigdivmod(a, b, r, NULL);
- while (r[0] > 1 && r[r[0]] == 0)
- r[0]--;
- return r;
- }
- /*
- * Greatest common divisor.
- */
- Bignum biggcd(Bignum av, Bignum bv)
- {
- Bignum a = copybn(av);
- Bignum b = copybn(bv);
- while (bignum_cmp(b, Zero) != 0) {
- Bignum t = newbn(b[0]);
- bigdivmod(a, b, t, NULL);
- while (t[0] > 1 && t[t[0]] == 0)
- t[0]--;
- freebn(a);
- a = b;
- b = t;
- }
- freebn(b);
- return a;
- }
- /*
- * Modular inverse, using Euclid's extended algorithm.
- */
- Bignum modinv(Bignum number, Bignum modulus)
- {
- Bignum a = copybn(modulus);
- Bignum b = copybn(number);
- Bignum xp = copybn(Zero);
- Bignum x = copybn(One);
- int sign = +1;
- assert(number[number[0]] != 0);
- assert(modulus[modulus[0]] != 0);
- while (bignum_cmp(b, One) != 0) {
- Bignum t, q;
- if (bignum_cmp(b, Zero) == 0) {
- /*
- * Found a common factor between the inputs, so we cannot
- * return a modular inverse at all.
- */
- freebn(b);
- freebn(a);
- freebn(xp);
- freebn(x);
- return NULL;
- }
- t = newbn(b[0]);
- q = newbn(a[0]);
- bigdivmod(a, b, t, q);
- while (t[0] > 1 && t[t[0]] == 0)
- t[0]--;
- while (q[0] > 1 && q[q[0]] == 0)
- q[0]--;
- freebn(a);
- a = b;
- b = t;
- t = xp;
- xp = x;
- x = bigmuladd(q, xp, t);
- sign = -sign;
- freebn(t);
- freebn(q);
- }
- freebn(b);
- freebn(a);
- freebn(xp);
- /* now we know that sign * x == 1, and that x < modulus */
- if (sign < 0) {
- /* set a new x to be modulus - x */
- Bignum newx = newbn(modulus[0]);
- BignumInt carry = 0;
- int maxspot = 1;
- int i;
- for (i = 1; i <= (int)newx[0]; i++) {
- BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
- BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
- newx[i] = aword - bword - carry;
- bword = ~bword;
- carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
- if (newx[i] != 0)
- maxspot = i;
- }
- newx[0] = maxspot;
- freebn(x);
- x = newx;
- }
- /* and return. */
- return x;
- }
- /*
- * Render a bignum into decimal. Return a malloced string holding
- * the decimal representation.
- */
- char *bignum_decimal(Bignum x)
- {
- int ndigits, ndigit;
- int i, iszero;
- BignumInt carry;
- char *ret;
- BignumInt *workspace;
- /*
- * First, estimate the number of digits. Since log(10)/log(2)
- * is just greater than 93/28 (the joys of continued fraction
- * approximations...) we know that for every 93 bits, we need
- * at most 28 digits. This will tell us how much to malloc.
- *
- * Formally: if x has i bits, that means x is strictly less
- * than 2^i. Since 2 is less than 10^(28/93), this is less than
- * 10^(28i/93). We need an integer power of ten, so we must
- * round up (rounding down might make it less than x again).
- * Therefore if we multiply the bit count by 28/93, rounding
- * up, we will have enough digits.
- *
- * i=0 (i.e., x=0) is an irritating special case.
- */
- i = bignum_bitcount(x);
- if (!i)
- ndigits = 1; /* x = 0 */
- else
- ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
- ndigits++; /* allow for trailing \0 */
- ret = snewn(ndigits, char);
- /*
- * Now allocate some workspace to hold the binary form as we
- * repeatedly divide it by ten. Initialise this to the
- * big-endian form of the number.
- */
- workspace = snewn(x[0], BignumInt);
- for (i = 0; i < (int)x[0]; i++)
- workspace[i] = x[x[0] - i];
- /*
- * Next, write the decimal number starting with the last digit.
- * We use ordinary short division, dividing 10 into the
- * workspace.
- */
- ndigit = ndigits - 1;
- ret[ndigit] = '\0';
- do {
- iszero = 1;
- carry = 0;
- for (i = 0; i < (int)x[0]; i++) {
- /*
- * Conceptually, we want to compute
- *
- * (carry << BIGNUM_INT_BITS) + workspace[i]
- * -----------------------------------------
- * 10
- *
- * but we don't have an integer type longer than BignumInt
- * to work with. So we have to do it in pieces.
- */
- BignumInt q, r;
- q = workspace[i] / 10;
- r = workspace[i] % 10;
- /* I want (BIGNUM_INT_MASK+1)/10 but can't say so directly! */
- q += carry * ((BIGNUM_INT_MASK-9) / 10 + 1);
- r += carry * ((BIGNUM_INT_MASK-9) % 10);
- q += r / 10;
- r %= 10;
- workspace[i] = q;
- carry = r;
- if (workspace[i])
- iszero = 0;
- }
- ret[--ndigit] = (char) (carry + '0');
- } while (!iszero);
- /*
- * There's a chance we've fallen short of the start of the
- * string. Correct if so.
- */
- if (ndigit > 0)
- memmove(ret, ret + ndigit, ndigits - ndigit);
- /*
- * Done.
- */
- smemclr(workspace, x[0] * sizeof(*workspace));
- sfree(workspace);
- return ret;
- }
|