sshdes.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. #include <assert.h>
  2. #include "ssh.h"
  3. /* des.c - implementation of DES
  4. */
  5. /*
  6. * Description of DES
  7. * ------------------
  8. *
  9. * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
  10. * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
  11. * And S-boxes are indexed by six consecutive bits, not by the outer two
  12. * followed by the middle four.
  13. *
  14. * The DES encryption routine requires a 64-bit input, and a key schedule K
  15. * containing 16 48-bit elements.
  16. *
  17. * First the input is permuted by the initial permutation IP.
  18. * Then the input is split into 32-bit words L and R. (L is the MSW.)
  19. * Next, 16 rounds. In each round:
  20. * (L, R) <- (R, L xor f(R, K[i]))
  21. * Then the pre-output words L and R are swapped.
  22. * Then L and R are glued back together into a 64-bit word. (L is the MSW,
  23. * again, but since we just swapped them, the MSW is the R that came out
  24. * of the last round.)
  25. * The 64-bit output block is permuted by the inverse of IP and returned.
  26. *
  27. * Decryption is identical except that the elements of K are used in the
  28. * opposite order. (This wouldn't work if that word swap didn't happen.)
  29. *
  30. * The function f, used in each round, accepts a 32-bit word R and a
  31. * 48-bit key block K. It produces a 32-bit output.
  32. *
  33. * First R is expanded to 48 bits using the bit-selection function E.
  34. * The resulting 48-bit block is XORed with the key block K to produce
  35. * a 48-bit block X.
  36. * This block X is split into eight groups of 6 bits. Each group of 6
  37. * bits is then looked up in one of the eight S-boxes to convert
  38. * it to 4 bits. These eight groups of 4 bits are glued back
  39. * together to produce a 32-bit preoutput block.
  40. * The preoutput block is permuted using the permutation P and returned.
  41. *
  42. * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
  43. * the approved input format for the key is a 64-bit word, eight of the
  44. * bits are discarded, so the actual quantity of key used is 56 bits.
  45. *
  46. * First the input key is converted to two 28-bit words C and D using
  47. * the bit-selection function PC1.
  48. * Then 16 rounds of key setup occur. In each round, C and D are each
  49. * rotated left by either 1 or 2 bits (depending on which round), and
  50. * then converted into a key schedule element using the bit-selection
  51. * function PC2.
  52. *
  53. * That's the actual algorithm. Now for the tedious details: all those
  54. * painful permutations and lookup tables.
  55. *
  56. * IP is a 64-to-64 bit permutation. Its output contains the following
  57. * bits of its input (listed in order MSB to LSB of output).
  58. *
  59. * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
  60. * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
  61. * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
  62. * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
  63. *
  64. * E is a 32-to-48 bit selection function. Its output contains the following
  65. * bits of its input (listed in order MSB to LSB of output).
  66. *
  67. * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
  68. * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
  69. *
  70. * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
  71. * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
  72. * The S-boxes are listed below. The first S-box listed is applied to the
  73. * most significant six bits of the block X; the last one is applied to the
  74. * least significant.
  75. *
  76. * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
  77. * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
  78. * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
  79. * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
  80. *
  81. * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
  82. * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
  83. * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
  84. * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
  85. *
  86. * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
  87. * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
  88. * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
  89. * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
  90. *
  91. * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
  92. * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
  93. * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
  94. * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
  95. *
  96. * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
  97. * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
  98. * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
  99. * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
  100. *
  101. * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
  102. * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
  103. * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
  104. * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
  105. *
  106. * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
  107. * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
  108. * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
  109. * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
  110. *
  111. * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
  112. * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
  113. * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
  114. * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
  115. *
  116. * P is a 32-to-32 bit permutation. Its output contains the following
  117. * bits of its input (listed in order MSB to LSB of output).
  118. *
  119. * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
  120. * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
  121. *
  122. * PC1 is a 64-to-56 bit selection function. Its output is in two words,
  123. * C and D. The word C contains the following bits of its input (listed
  124. * in order MSB to LSB of output).
  125. *
  126. * 7 15 23 31 39 47 55 63 6 14 22 30 38 46
  127. * 54 62 5 13 21 29 37 45 53 61 4 12 20 28
  128. *
  129. * And the word D contains these bits.
  130. *
  131. * 1 9 17 25 33 41 49 57 2 10 18 26 34 42
  132. * 50 58 3 11 19 27 35 43 51 59 36 44 52 60
  133. *
  134. * PC2 is a 56-to-48 bit selection function. Its input is in two words,
  135. * C and D. These are treated as one 56-bit word (with C more significant,
  136. * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
  137. * 0 of the word are bits 27 to 0 of D). The output contains the following
  138. * bits of this 56-bit input word (listed in order MSB to LSB of output).
  139. *
  140. * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
  141. * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
  142. */
  143. /*
  144. * Implementation details
  145. * ----------------------
  146. *
  147. * If you look at the code in this module, you'll find it looks
  148. * nothing _like_ the above algorithm. Here I explain the
  149. * differences...
  150. *
  151. * Key setup has not been heavily optimised here. We are not
  152. * concerned with key agility: we aren't codebreakers. We don't
  153. * mind a little delay (and it really is a little one; it may be a
  154. * factor of five or so slower than it could be but it's still not
  155. * an appreciable length of time) while setting up. The only tweaks
  156. * in the key setup are ones which change the format of the key
  157. * schedule to speed up the actual encryption. I'll describe those
  158. * below.
  159. *
  160. * The first and most obvious optimisation is the S-boxes. Since
  161. * each S-box always targets the same four bits in the final 32-bit
  162. * word, so the output from (for example) S-box 0 must always be
  163. * shifted left 28 bits, we can store the already-shifted outputs
  164. * in the lookup tables. This reduces lookup-and-shift to lookup,
  165. * so the S-box step is now just a question of ORing together eight
  166. * table lookups.
  167. *
  168. * The permutation P is just a bit order change; it's invariant
  169. * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
  170. * can apply P to every entry of the S-box tables and then we don't
  171. * have to do it in the code of f(). This yields a set of tables
  172. * which might be called SP-boxes.
  173. *
  174. * The bit-selection function E is our next target. Note that E is
  175. * immediately followed by the operation of splitting into 6-bit
  176. * chunks. Examining the 6-bit chunks coming out of E we notice
  177. * they're all contiguous within the word (speaking cyclically -
  178. * the end two wrap round); so we can extract those bit strings
  179. * individually rather than explicitly running E. This would yield
  180. * code such as
  181. *
  182. * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
  183. * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
  184. *
  185. * and so on; and the key schedule preparation would have to
  186. * provide each 6-bit chunk separately.
  187. *
  188. * Really we'd like to XOR in the key schedule element before
  189. * looking up bit strings in R. This we can't do, naively, because
  190. * the 6-bit strings we want overlap. But look at the strings:
  191. *
  192. * 3322222222221111111111
  193. * bit 10987654321098765432109876543210
  194. *
  195. * box0 XXXXX X
  196. * box1 XXXXXX
  197. * box2 XXXXXX
  198. * box3 XXXXXX
  199. * box4 XXXXXX
  200. * box5 XXXXXX
  201. * box6 XXXXXX
  202. * box7 X XXXXX
  203. *
  204. * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
  205. * overlap with each other. Neither do the ones for boxes 1, 3, 5
  206. * and 7. So we could provide the key schedule in the form of two
  207. * words that we can separately XOR into R, and then every S-box
  208. * index is available as a (cyclically) contiguous 6-bit substring
  209. * of one or the other of the results.
  210. *
  211. * The comments in Eric Young's libdes implementation point out
  212. * that two of these bit strings require a rotation (rather than a
  213. * simple shift) to extract. It's unavoidable that at least _one_
  214. * must do; but we can actually run the whole inner algorithm (all
  215. * 16 rounds) rotated one bit to the left, so that what the `real'
  216. * DES description sees as L=0x80000001 we see as L=0x00000003.
  217. * This requires rotating all our SP-box entries one bit to the
  218. * left, and rotating each word of the key schedule elements one to
  219. * the left, and rotating L and R one bit left just after IP and
  220. * one bit right again just before FP. And in each round we convert
  221. * a rotate into a shift, so we've saved a few per cent.
  222. *
  223. * That's about it for the inner loop; the SP-box tables as listed
  224. * below are what I've described here (the original S value,
  225. * shifted to its final place in the input to P, run through P, and
  226. * then rotated one bit left). All that remains is to optimise the
  227. * initial permutation IP.
  228. *
  229. * IP is not an arbitrary permutation. It has the nice property
  230. * that if you take any bit number, write it in binary (6 bits),
  231. * permute those 6 bits and invert some of them, you get the final
  232. * position of that bit. Specifically, the bit whose initial
  233. * position is given (in binary) as fedcba ends up in position
  234. * AcbFED (where a capital letter denotes the inverse of a bit).
  235. *
  236. * We have the 64-bit data in two 32-bit words L and R, where bits
  237. * in L are those with f=1 and bits in R are those with f=0. We
  238. * note that we can do a simple transformation: suppose we exchange
  239. * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
  240. * the bit fedcba to be in position cedfba - we've `swapped' bits c
  241. * and f in the position of each bit!
  242. *
  243. * Better still, this transformation is easy. In the example above,
  244. * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
  245. * are 0xF0F0F0F0. So we can do
  246. *
  247. * difference = ((R >> 4) ^ L) & 0x0F0F0F0F
  248. * R ^= (difference << 4)
  249. * L ^= difference
  250. *
  251. * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
  252. * Also, we can invert the bit at the top just by exchanging L and
  253. * R. So in a few swaps and a few of these bit operations we can
  254. * do:
  255. *
  256. * Initially the position of bit fedcba is fedcba
  257. * Swap L with R to make it Fedcba
  258. * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
  259. * Perform bitswap(16,0x0000FFFF) to make it ecdFba
  260. * Swap L with R to make it EcdFba
  261. * Perform bitswap( 2,0x33333333) to make it bcdFEa
  262. * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
  263. * Swap L with R to make it DcbFEa
  264. * Perform bitswap( 1,0x55555555) to make it acbFED
  265. * Swap L with R to make it AcbFED
  266. *
  267. * (In the actual code the four swaps are implicit: R and L are
  268. * simply used the other way round in the first, second and last
  269. * bitswap operations.)
  270. *
  271. * The final permutation is just the inverse of IP, so it can be
  272. * performed by a similar set of operations.
  273. */
  274. typedef struct {
  275. word32 k0246[16], k1357[16];
  276. word32 iv0, iv1;
  277. } DESContext;
  278. #define rotl(x, c) ( (x << c) | (x >> (32-c)) )
  279. #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
  280. static word32 bitsel(word32 * input, const int *bitnums, int size)
  281. {
  282. word32 ret = 0;
  283. while (size--) {
  284. int bitpos = *bitnums++;
  285. ret <<= 1;
  286. if (bitpos >= 0)
  287. ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
  288. }
  289. return ret;
  290. }
  291. static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
  292. {
  293. static const int PC1_Cbits[] = {
  294. 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
  295. 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
  296. };
  297. static const int PC1_Dbits[] = {
  298. 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
  299. 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
  300. };
  301. /*
  302. * The bit numbers in the two lists below don't correspond to
  303. * the ones in the above description of PC2, because in the
  304. * above description C and D are concatenated so `bit 28' means
  305. * bit 0 of C. In this implementation we're using the standard
  306. * `bitsel' function above and C is in the second word, so bit
  307. * 0 of C is addressed by writing `32' here.
  308. */
  309. static const int PC2_0246[] = {
  310. 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
  311. 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
  312. };
  313. static const int PC2_1357[] = {
  314. -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
  315. -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
  316. };
  317. static const int leftshifts[] =
  318. { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
  319. word32 C, D;
  320. word32 buf[2];
  321. int i;
  322. buf[0] = key_lsw;
  323. buf[1] = key_msw;
  324. C = bitsel(buf, PC1_Cbits, 28);
  325. D = bitsel(buf, PC1_Dbits, 28);
  326. for (i = 0; i < 16; i++) {
  327. C = rotl28(C, leftshifts[i]);
  328. D = rotl28(D, leftshifts[i]);
  329. buf[0] = D;
  330. buf[1] = C;
  331. sched->k0246[i] = bitsel(buf, PC2_0246, 32);
  332. sched->k1357[i] = bitsel(buf, PC2_1357, 32);
  333. }
  334. sched->iv0 = sched->iv1 = 0;
  335. }
  336. static const word32 SPboxes[8][64] = {
  337. {0x01010400, 0x00000000, 0x00010000, 0x01010404,
  338. 0x01010004, 0x00010404, 0x00000004, 0x00010000,
  339. 0x00000400, 0x01010400, 0x01010404, 0x00000400,
  340. 0x01000404, 0x01010004, 0x01000000, 0x00000004,
  341. 0x00000404, 0x01000400, 0x01000400, 0x00010400,
  342. 0x00010400, 0x01010000, 0x01010000, 0x01000404,
  343. 0x00010004, 0x01000004, 0x01000004, 0x00010004,
  344. 0x00000000, 0x00000404, 0x00010404, 0x01000000,
  345. 0x00010000, 0x01010404, 0x00000004, 0x01010000,
  346. 0x01010400, 0x01000000, 0x01000000, 0x00000400,
  347. 0x01010004, 0x00010000, 0x00010400, 0x01000004,
  348. 0x00000400, 0x00000004, 0x01000404, 0x00010404,
  349. 0x01010404, 0x00010004, 0x01010000, 0x01000404,
  350. 0x01000004, 0x00000404, 0x00010404, 0x01010400,
  351. 0x00000404, 0x01000400, 0x01000400, 0x00000000,
  352. 0x00010004, 0x00010400, 0x00000000, 0x01010004L},
  353. {0x80108020, 0x80008000, 0x00008000, 0x00108020,
  354. 0x00100000, 0x00000020, 0x80100020, 0x80008020,
  355. 0x80000020, 0x80108020, 0x80108000, 0x80000000,
  356. 0x80008000, 0x00100000, 0x00000020, 0x80100020,
  357. 0x00108000, 0x00100020, 0x80008020, 0x00000000,
  358. 0x80000000, 0x00008000, 0x00108020, 0x80100000,
  359. 0x00100020, 0x80000020, 0x00000000, 0x00108000,
  360. 0x00008020, 0x80108000, 0x80100000, 0x00008020,
  361. 0x00000000, 0x00108020, 0x80100020, 0x00100000,
  362. 0x80008020, 0x80100000, 0x80108000, 0x00008000,
  363. 0x80100000, 0x80008000, 0x00000020, 0x80108020,
  364. 0x00108020, 0x00000020, 0x00008000, 0x80000000,
  365. 0x00008020, 0x80108000, 0x00100000, 0x80000020,
  366. 0x00100020, 0x80008020, 0x80000020, 0x00100020,
  367. 0x00108000, 0x00000000, 0x80008000, 0x00008020,
  368. 0x80000000, 0x80100020, 0x80108020, 0x00108000L},
  369. {0x00000208, 0x08020200, 0x00000000, 0x08020008,
  370. 0x08000200, 0x00000000, 0x00020208, 0x08000200,
  371. 0x00020008, 0x08000008, 0x08000008, 0x00020000,
  372. 0x08020208, 0x00020008, 0x08020000, 0x00000208,
  373. 0x08000000, 0x00000008, 0x08020200, 0x00000200,
  374. 0x00020200, 0x08020000, 0x08020008, 0x00020208,
  375. 0x08000208, 0x00020200, 0x00020000, 0x08000208,
  376. 0x00000008, 0x08020208, 0x00000200, 0x08000000,
  377. 0x08020200, 0x08000000, 0x00020008, 0x00000208,
  378. 0x00020000, 0x08020200, 0x08000200, 0x00000000,
  379. 0x00000200, 0x00020008, 0x08020208, 0x08000200,
  380. 0x08000008, 0x00000200, 0x00000000, 0x08020008,
  381. 0x08000208, 0x00020000, 0x08000000, 0x08020208,
  382. 0x00000008, 0x00020208, 0x00020200, 0x08000008,
  383. 0x08020000, 0x08000208, 0x00000208, 0x08020000,
  384. 0x00020208, 0x00000008, 0x08020008, 0x00020200L},
  385. {0x00802001, 0x00002081, 0x00002081, 0x00000080,
  386. 0x00802080, 0x00800081, 0x00800001, 0x00002001,
  387. 0x00000000, 0x00802000, 0x00802000, 0x00802081,
  388. 0x00000081, 0x00000000, 0x00800080, 0x00800001,
  389. 0x00000001, 0x00002000, 0x00800000, 0x00802001,
  390. 0x00000080, 0x00800000, 0x00002001, 0x00002080,
  391. 0x00800081, 0x00000001, 0x00002080, 0x00800080,
  392. 0x00002000, 0x00802080, 0x00802081, 0x00000081,
  393. 0x00800080, 0x00800001, 0x00802000, 0x00802081,
  394. 0x00000081, 0x00000000, 0x00000000, 0x00802000,
  395. 0x00002080, 0x00800080, 0x00800081, 0x00000001,
  396. 0x00802001, 0x00002081, 0x00002081, 0x00000080,
  397. 0x00802081, 0x00000081, 0x00000001, 0x00002000,
  398. 0x00800001, 0x00002001, 0x00802080, 0x00800081,
  399. 0x00002001, 0x00002080, 0x00800000, 0x00802001,
  400. 0x00000080, 0x00800000, 0x00002000, 0x00802080L},
  401. {0x00000100, 0x02080100, 0x02080000, 0x42000100,
  402. 0x00080000, 0x00000100, 0x40000000, 0x02080000,
  403. 0x40080100, 0x00080000, 0x02000100, 0x40080100,
  404. 0x42000100, 0x42080000, 0x00080100, 0x40000000,
  405. 0x02000000, 0x40080000, 0x40080000, 0x00000000,
  406. 0x40000100, 0x42080100, 0x42080100, 0x02000100,
  407. 0x42080000, 0x40000100, 0x00000000, 0x42000000,
  408. 0x02080100, 0x02000000, 0x42000000, 0x00080100,
  409. 0x00080000, 0x42000100, 0x00000100, 0x02000000,
  410. 0x40000000, 0x02080000, 0x42000100, 0x40080100,
  411. 0x02000100, 0x40000000, 0x42080000, 0x02080100,
  412. 0x40080100, 0x00000100, 0x02000000, 0x42080000,
  413. 0x42080100, 0x00080100, 0x42000000, 0x42080100,
  414. 0x02080000, 0x00000000, 0x40080000, 0x42000000,
  415. 0x00080100, 0x02000100, 0x40000100, 0x00080000,
  416. 0x00000000, 0x40080000, 0x02080100, 0x40000100L},
  417. {0x20000010, 0x20400000, 0x00004000, 0x20404010,
  418. 0x20400000, 0x00000010, 0x20404010, 0x00400000,
  419. 0x20004000, 0x00404010, 0x00400000, 0x20000010,
  420. 0x00400010, 0x20004000, 0x20000000, 0x00004010,
  421. 0x00000000, 0x00400010, 0x20004010, 0x00004000,
  422. 0x00404000, 0x20004010, 0x00000010, 0x20400010,
  423. 0x20400010, 0x00000000, 0x00404010, 0x20404000,
  424. 0x00004010, 0x00404000, 0x20404000, 0x20000000,
  425. 0x20004000, 0x00000010, 0x20400010, 0x00404000,
  426. 0x20404010, 0x00400000, 0x00004010, 0x20000010,
  427. 0x00400000, 0x20004000, 0x20000000, 0x00004010,
  428. 0x20000010, 0x20404010, 0x00404000, 0x20400000,
  429. 0x00404010, 0x20404000, 0x00000000, 0x20400010,
  430. 0x00000010, 0x00004000, 0x20400000, 0x00404010,
  431. 0x00004000, 0x00400010, 0x20004010, 0x00000000,
  432. 0x20404000, 0x20000000, 0x00400010, 0x20004010L},
  433. {0x00200000, 0x04200002, 0x04000802, 0x00000000,
  434. 0x00000800, 0x04000802, 0x00200802, 0x04200800,
  435. 0x04200802, 0x00200000, 0x00000000, 0x04000002,
  436. 0x00000002, 0x04000000, 0x04200002, 0x00000802,
  437. 0x04000800, 0x00200802, 0x00200002, 0x04000800,
  438. 0x04000002, 0x04200000, 0x04200800, 0x00200002,
  439. 0x04200000, 0x00000800, 0x00000802, 0x04200802,
  440. 0x00200800, 0x00000002, 0x04000000, 0x00200800,
  441. 0x04000000, 0x00200800, 0x00200000, 0x04000802,
  442. 0x04000802, 0x04200002, 0x04200002, 0x00000002,
  443. 0x00200002, 0x04000000, 0x04000800, 0x00200000,
  444. 0x04200800, 0x00000802, 0x00200802, 0x04200800,
  445. 0x00000802, 0x04000002, 0x04200802, 0x04200000,
  446. 0x00200800, 0x00000000, 0x00000002, 0x04200802,
  447. 0x00000000, 0x00200802, 0x04200000, 0x00000800,
  448. 0x04000002, 0x04000800, 0x00000800, 0x00200002L},
  449. {0x10001040, 0x00001000, 0x00040000, 0x10041040,
  450. 0x10000000, 0x10001040, 0x00000040, 0x10000000,
  451. 0x00040040, 0x10040000, 0x10041040, 0x00041000,
  452. 0x10041000, 0x00041040, 0x00001000, 0x00000040,
  453. 0x10040000, 0x10000040, 0x10001000, 0x00001040,
  454. 0x00041000, 0x00040040, 0x10040040, 0x10041000,
  455. 0x00001040, 0x00000000, 0x00000000, 0x10040040,
  456. 0x10000040, 0x10001000, 0x00041040, 0x00040000,
  457. 0x00041040, 0x00040000, 0x10041000, 0x00001000,
  458. 0x00000040, 0x10040040, 0x00001000, 0x00041040,
  459. 0x10001000, 0x00000040, 0x10000040, 0x10040000,
  460. 0x10040040, 0x10000000, 0x00040000, 0x10001040,
  461. 0x00000000, 0x10041040, 0x00040040, 0x10000040,
  462. 0x10040000, 0x10001000, 0x10001040, 0x00000000,
  463. 0x10041040, 0x00041000, 0x00041000, 0x00001040,
  464. 0x00001040, 0x00040040, 0x10000000, 0x10041000L}
  465. };
  466. #define f(R, K0246, K1357) (\
  467. s0246 = R ^ K0246, \
  468. s1357 = R ^ K1357, \
  469. s0246 = rotl(s0246, 28), \
  470. SPboxes[0] [(s0246 >> 24) & 0x3F] | \
  471. SPboxes[1] [(s1357 >> 24) & 0x3F] | \
  472. SPboxes[2] [(s0246 >> 16) & 0x3F] | \
  473. SPboxes[3] [(s1357 >> 16) & 0x3F] | \
  474. SPboxes[4] [(s0246 >> 8) & 0x3F] | \
  475. SPboxes[5] [(s1357 >> 8) & 0x3F] | \
  476. SPboxes[6] [(s0246 ) & 0x3F] | \
  477. SPboxes[7] [(s1357 ) & 0x3F])
  478. #define bitswap(L, R, n, mask) (\
  479. swap = mask & ( (R >> n) ^ L ), \
  480. R ^= swap << n, \
  481. L ^= swap)
  482. /* Initial permutation */
  483. #define IP(L, R) (\
  484. bitswap(R, L, 4, 0x0F0F0F0F), \
  485. bitswap(R, L, 16, 0x0000FFFF), \
  486. bitswap(L, R, 2, 0x33333333), \
  487. bitswap(L, R, 8, 0x00FF00FF), \
  488. bitswap(R, L, 1, 0x55555555))
  489. /* Final permutation */
  490. #define FP(L, R) (\
  491. bitswap(R, L, 1, 0x55555555), \
  492. bitswap(L, R, 8, 0x00FF00FF), \
  493. bitswap(L, R, 2, 0x33333333), \
  494. bitswap(R, L, 16, 0x0000FFFF), \
  495. bitswap(R, L, 4, 0x0F0F0F0F))
  496. static void des_encipher(word32 * output, word32 L, word32 R,
  497. DESContext * sched)
  498. {
  499. word32 swap, s0246, s1357;
  500. IP(L, R);
  501. L = rotl(L, 1);
  502. R = rotl(R, 1);
  503. L ^= f(R, sched->k0246[0], sched->k1357[0]);
  504. R ^= f(L, sched->k0246[1], sched->k1357[1]);
  505. L ^= f(R, sched->k0246[2], sched->k1357[2]);
  506. R ^= f(L, sched->k0246[3], sched->k1357[3]);
  507. L ^= f(R, sched->k0246[4], sched->k1357[4]);
  508. R ^= f(L, sched->k0246[5], sched->k1357[5]);
  509. L ^= f(R, sched->k0246[6], sched->k1357[6]);
  510. R ^= f(L, sched->k0246[7], sched->k1357[7]);
  511. L ^= f(R, sched->k0246[8], sched->k1357[8]);
  512. R ^= f(L, sched->k0246[9], sched->k1357[9]);
  513. L ^= f(R, sched->k0246[10], sched->k1357[10]);
  514. R ^= f(L, sched->k0246[11], sched->k1357[11]);
  515. L ^= f(R, sched->k0246[12], sched->k1357[12]);
  516. R ^= f(L, sched->k0246[13], sched->k1357[13]);
  517. L ^= f(R, sched->k0246[14], sched->k1357[14]);
  518. R ^= f(L, sched->k0246[15], sched->k1357[15]);
  519. L = rotl(L, 31);
  520. R = rotl(R, 31);
  521. swap = L;
  522. L = R;
  523. R = swap;
  524. FP(L, R);
  525. output[0] = L;
  526. output[1] = R;
  527. }
  528. static void des_decipher(word32 * output, word32 L, word32 R,
  529. DESContext * sched)
  530. {
  531. word32 swap, s0246, s1357;
  532. IP(L, R);
  533. L = rotl(L, 1);
  534. R = rotl(R, 1);
  535. L ^= f(R, sched->k0246[15], sched->k1357[15]);
  536. R ^= f(L, sched->k0246[14], sched->k1357[14]);
  537. L ^= f(R, sched->k0246[13], sched->k1357[13]);
  538. R ^= f(L, sched->k0246[12], sched->k1357[12]);
  539. L ^= f(R, sched->k0246[11], sched->k1357[11]);
  540. R ^= f(L, sched->k0246[10], sched->k1357[10]);
  541. L ^= f(R, sched->k0246[9], sched->k1357[9]);
  542. R ^= f(L, sched->k0246[8], sched->k1357[8]);
  543. L ^= f(R, sched->k0246[7], sched->k1357[7]);
  544. R ^= f(L, sched->k0246[6], sched->k1357[6]);
  545. L ^= f(R, sched->k0246[5], sched->k1357[5]);
  546. R ^= f(L, sched->k0246[4], sched->k1357[4]);
  547. L ^= f(R, sched->k0246[3], sched->k1357[3]);
  548. R ^= f(L, sched->k0246[2], sched->k1357[2]);
  549. L ^= f(R, sched->k0246[1], sched->k1357[1]);
  550. R ^= f(L, sched->k0246[0], sched->k1357[0]);
  551. L = rotl(L, 31);
  552. R = rotl(R, 31);
  553. swap = L;
  554. L = R;
  555. R = swap;
  556. FP(L, R);
  557. output[0] = L;
  558. output[1] = R;
  559. }
  560. #define GET_32BIT_MSB_FIRST(cp) \
  561. (((unsigned long)(unsigned char)(cp)[3]) | \
  562. ((unsigned long)(unsigned char)(cp)[2] << 8) | \
  563. ((unsigned long)(unsigned char)(cp)[1] << 16) | \
  564. ((unsigned long)(unsigned char)(cp)[0] << 24))
  565. #define PUT_32BIT_MSB_FIRST(cp, value) do { \
  566. (cp)[3] = (value); \
  567. (cp)[2] = (value) >> 8; \
  568. (cp)[1] = (value) >> 16; \
  569. (cp)[0] = (value) >> 24; } while (0)
  570. static void des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
  571. unsigned int len, DESContext * sched)
  572. {
  573. word32 out[2], iv0, iv1;
  574. unsigned int i;
  575. assert((len & 7) == 0);
  576. iv0 = sched->iv0;
  577. iv1 = sched->iv1;
  578. for (i = 0; i < len; i += 8) {
  579. iv0 ^= GET_32BIT_MSB_FIRST(src);
  580. src += 4;
  581. iv1 ^= GET_32BIT_MSB_FIRST(src);
  582. src += 4;
  583. des_encipher(out, iv0, iv1, sched);
  584. iv0 = out[0];
  585. iv1 = out[1];
  586. PUT_32BIT_MSB_FIRST(dest, iv0);
  587. dest += 4;
  588. PUT_32BIT_MSB_FIRST(dest, iv1);
  589. dest += 4;
  590. }
  591. sched->iv0 = iv0;
  592. sched->iv1 = iv1;
  593. }
  594. static void des_cbc_decrypt(unsigned char *dest, const unsigned char *src,
  595. unsigned int len, DESContext * sched)
  596. {
  597. word32 out[2], iv0, iv1, xL, xR;
  598. unsigned int i;
  599. assert((len & 7) == 0);
  600. iv0 = sched->iv0;
  601. iv1 = sched->iv1;
  602. for (i = 0; i < len; i += 8) {
  603. xL = GET_32BIT_MSB_FIRST(src);
  604. src += 4;
  605. xR = GET_32BIT_MSB_FIRST(src);
  606. src += 4;
  607. des_decipher(out, xL, xR, sched);
  608. iv0 ^= out[0];
  609. iv1 ^= out[1];
  610. PUT_32BIT_MSB_FIRST(dest, iv0);
  611. dest += 4;
  612. PUT_32BIT_MSB_FIRST(dest, iv1);
  613. dest += 4;
  614. iv0 = xL;
  615. iv1 = xR;
  616. }
  617. sched->iv0 = iv0;
  618. sched->iv1 = iv1;
  619. }
  620. static void des_3cbc_encrypt(unsigned char *dest, const unsigned char *src,
  621. unsigned int len, DESContext * scheds)
  622. {
  623. des_cbc_encrypt(dest, src, len, &scheds[0]);
  624. des_cbc_decrypt(dest, src, len, &scheds[1]);
  625. des_cbc_encrypt(dest, src, len, &scheds[2]);
  626. }
  627. static void des_cbc3_encrypt(unsigned char *dest, const unsigned char *src,
  628. unsigned int len, DESContext * scheds)
  629. {
  630. word32 out[2], iv0, iv1;
  631. unsigned int i;
  632. assert((len & 7) == 0);
  633. iv0 = scheds->iv0;
  634. iv1 = scheds->iv1;
  635. for (i = 0; i < len; i += 8) {
  636. iv0 ^= GET_32BIT_MSB_FIRST(src);
  637. src += 4;
  638. iv1 ^= GET_32BIT_MSB_FIRST(src);
  639. src += 4;
  640. des_encipher(out, iv0, iv1, &scheds[0]);
  641. des_decipher(out, out[0], out[1], &scheds[1]);
  642. des_encipher(out, out[0], out[1], &scheds[2]);
  643. iv0 = out[0];
  644. iv1 = out[1];
  645. PUT_32BIT_MSB_FIRST(dest, iv0);
  646. dest += 4;
  647. PUT_32BIT_MSB_FIRST(dest, iv1);
  648. dest += 4;
  649. }
  650. scheds->iv0 = iv0;
  651. scheds->iv1 = iv1;
  652. }
  653. static void des_3cbc_decrypt(unsigned char *dest, const unsigned char *src,
  654. unsigned int len, DESContext * scheds)
  655. {
  656. des_cbc_decrypt(dest, src, len, &scheds[2]);
  657. des_cbc_encrypt(dest, src, len, &scheds[1]);
  658. des_cbc_decrypt(dest, src, len, &scheds[0]);
  659. }
  660. static void des_cbc3_decrypt(unsigned char *dest, const unsigned char *src,
  661. unsigned int len, DESContext * scheds)
  662. {
  663. word32 out[2], iv0, iv1, xL, xR;
  664. unsigned int i;
  665. assert((len & 7) == 0);
  666. iv0 = scheds->iv0;
  667. iv1 = scheds->iv1;
  668. for (i = 0; i < len; i += 8) {
  669. xL = GET_32BIT_MSB_FIRST(src);
  670. src += 4;
  671. xR = GET_32BIT_MSB_FIRST(src);
  672. src += 4;
  673. des_decipher(out, xL, xR, &scheds[2]);
  674. des_encipher(out, out[0], out[1], &scheds[1]);
  675. des_decipher(out, out[0], out[1], &scheds[0]);
  676. iv0 ^= out[0];
  677. iv1 ^= out[1];
  678. PUT_32BIT_MSB_FIRST(dest, iv0);
  679. dest += 4;
  680. PUT_32BIT_MSB_FIRST(dest, iv1);
  681. dest += 4;
  682. iv0 = xL;
  683. iv1 = xR;
  684. }
  685. scheds->iv0 = iv0;
  686. scheds->iv1 = iv1;
  687. }
  688. static void *des3_make_context(void)
  689. {
  690. return snewn(3, DESContext);
  691. }
  692. static void *des3_ssh1_make_context(void)
  693. {
  694. /* Need 3 keys for each direction, in SSH1 */
  695. return snewn(6, DESContext);
  696. }
  697. static void *des_make_context(void)
  698. {
  699. return snew(DESContext);
  700. }
  701. static void *des_ssh1_make_context(void)
  702. {
  703. /* Need one key for each direction, in SSH1 */
  704. return snewn(2, DESContext);
  705. }
  706. static void des3_free_context(void *handle) /* used for both 3DES and DES */
  707. {
  708. sfree(handle);
  709. }
  710. static void des3_key(void *handle, unsigned char *key)
  711. {
  712. DESContext *keys = (DESContext *) handle;
  713. des_key_setup(GET_32BIT_MSB_FIRST(key),
  714. GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
  715. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  716. GET_32BIT_MSB_FIRST(key + 12), &keys[1]);
  717. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  718. GET_32BIT_MSB_FIRST(key + 20), &keys[2]);
  719. }
  720. static void des3_iv(void *handle, unsigned char *key)
  721. {
  722. DESContext *keys = (DESContext *) handle;
  723. keys[0].iv0 = GET_32BIT_MSB_FIRST(key);
  724. keys[0].iv1 = GET_32BIT_MSB_FIRST(key + 4);
  725. }
  726. static void des_key(void *handle, unsigned char *key)
  727. {
  728. DESContext *keys = (DESContext *) handle;
  729. des_key_setup(GET_32BIT_MSB_FIRST(key),
  730. GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
  731. }
  732. static void des3_sesskey(void *handle, unsigned char *key)
  733. {
  734. DESContext *keys = (DESContext *) handle;
  735. des3_key(keys, key);
  736. des3_key(keys+3, key);
  737. }
  738. static void des3_encrypt_blk(void *handle, unsigned char *blk, int len)
  739. {
  740. DESContext *keys = (DESContext *) handle;
  741. des_3cbc_encrypt(blk, blk, len, keys);
  742. }
  743. static void des3_decrypt_blk(void *handle, unsigned char *blk, int len)
  744. {
  745. DESContext *keys = (DESContext *) handle;
  746. des_3cbc_decrypt(blk, blk, len, keys+3);
  747. }
  748. static void des3_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
  749. {
  750. DESContext *keys = (DESContext *) handle;
  751. des_cbc3_encrypt(blk, blk, len, keys);
  752. }
  753. static void des3_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
  754. {
  755. DESContext *keys = (DESContext *) handle;
  756. des_cbc3_decrypt(blk, blk, len, keys);
  757. }
  758. static void des_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
  759. {
  760. DESContext *keys = (DESContext *) handle;
  761. des_cbc_encrypt(blk, blk, len, keys);
  762. }
  763. static void des_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
  764. {
  765. DESContext *keys = (DESContext *) handle;
  766. des_cbc_decrypt(blk, blk, len, keys);
  767. }
  768. void des3_decrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
  769. {
  770. DESContext ourkeys[3];
  771. des_key_setup(GET_32BIT_MSB_FIRST(key),
  772. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  773. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  774. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  775. des_key_setup(GET_32BIT_MSB_FIRST(key),
  776. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
  777. des_3cbc_decrypt(blk, blk, len, ourkeys);
  778. memset(ourkeys, 0, sizeof(ourkeys));
  779. }
  780. void des3_encrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
  781. {
  782. DESContext ourkeys[3];
  783. des_key_setup(GET_32BIT_MSB_FIRST(key),
  784. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  785. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  786. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  787. des_key_setup(GET_32BIT_MSB_FIRST(key),
  788. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
  789. des_3cbc_encrypt(blk, blk, len, ourkeys);
  790. memset(ourkeys, 0, sizeof(ourkeys));
  791. }
  792. void des3_decrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
  793. unsigned char *blk, int len)
  794. {
  795. DESContext ourkeys[3];
  796. des_key_setup(GET_32BIT_MSB_FIRST(key),
  797. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  798. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  799. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  800. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  801. GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
  802. ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
  803. ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
  804. des_cbc3_decrypt(blk, blk, len, ourkeys);
  805. memset(ourkeys, 0, sizeof(ourkeys));
  806. }
  807. void des3_encrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
  808. unsigned char *blk, int len)
  809. {
  810. DESContext ourkeys[3];
  811. des_key_setup(GET_32BIT_MSB_FIRST(key),
  812. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  813. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  814. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  815. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  816. GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
  817. ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
  818. ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
  819. des_cbc3_encrypt(blk, blk, len, ourkeys);
  820. memset(ourkeys, 0, sizeof(ourkeys));
  821. }
  822. static void des_keysetup_xdmauth(unsigned char *keydata, DESContext *dc)
  823. {
  824. unsigned char key[8];
  825. int i, nbits, j;
  826. unsigned int bits;
  827. bits = 0;
  828. nbits = 0;
  829. j = 0;
  830. for (i = 0; i < 8; i++) {
  831. if (nbits < 7) {
  832. bits = (bits << 8) | keydata[j];
  833. nbits += 8;
  834. j++;
  835. }
  836. key[i] = (bits >> (nbits - 7)) << 1;
  837. bits &= ~(0x7F << (nbits - 7));
  838. nbits -= 7;
  839. }
  840. des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);
  841. }
  842. void des_encrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
  843. {
  844. DESContext dc;
  845. des_keysetup_xdmauth(keydata, &dc);
  846. des_cbc_encrypt(blk, blk, 24, &dc);
  847. }
  848. void des_decrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
  849. {
  850. DESContext dc;
  851. des_keysetup_xdmauth(keydata, &dc);
  852. des_cbc_decrypt(blk, blk, 24, &dc);
  853. }
  854. static const struct ssh2_cipher ssh_3des_ssh2 = {
  855. des3_make_context, des3_free_context, des3_iv, des3_key,
  856. des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk,
  857. "3des-cbc",
  858. 8, 168, "triple-DES"
  859. };
  860. /*
  861. * Single DES in ssh2. "des-cbc" is marked as HISTORIC in
  862. * draft-ietf-secsh-assignednumbers-04.txt, referring to
  863. * FIPS-46-3. ("Single DES (i.e., DES) will be permitted
  864. * for legacy systems only.") , but ssh.com support it and
  865. * apparently aren't the only people to do so, so we sigh
  866. * and implement it anyway.
  867. */
  868. static const struct ssh2_cipher ssh_des_ssh2 = {
  869. des_make_context, des3_free_context, des3_iv, des_key,
  870. des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,
  871. "des-cbc",
  872. 8, 56, "single-DES"
  873. };
  874. static const struct ssh2_cipher *const des3_list[] = {
  875. &ssh_3des_ssh2
  876. };
  877. const struct ssh2_ciphers ssh2_3des = {
  878. sizeof(des3_list) / sizeof(*des3_list),
  879. des3_list
  880. };
  881. static const struct ssh2_cipher *const des_list[] = {
  882. &ssh_des_ssh2
  883. };
  884. const struct ssh2_ciphers ssh2_des = {
  885. sizeof(des3_list) / sizeof(*des_list),
  886. des_list
  887. };
  888. const struct ssh_cipher ssh_3des = {
  889. des3_ssh1_make_context, des3_free_context, des3_sesskey,
  890. des3_encrypt_blk, des3_decrypt_blk,
  891. 8, "triple-DES"
  892. };
  893. static void des_sesskey(void *handle, unsigned char *key)
  894. {
  895. DESContext *keys = (DESContext *) handle;
  896. des_key(keys, key);
  897. des_key(keys+1, key);
  898. }
  899. static void des_encrypt_blk(void *handle, unsigned char *blk, int len)
  900. {
  901. DESContext *keys = (DESContext *) handle;
  902. des_cbc_encrypt(blk, blk, len, keys);
  903. }
  904. static void des_decrypt_blk(void *handle, unsigned char *blk, int len)
  905. {
  906. DESContext *keys = (DESContext *) handle;
  907. des_cbc_decrypt(blk, blk, len, keys+1);
  908. }
  909. const struct ssh_cipher ssh_des = {
  910. des_ssh1_make_context, des3_free_context, des_sesskey,
  911. des_encrypt_blk, des_decrypt_blk,
  912. 8, "single-DES"
  913. };