1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639 |
- /*
- * tree234.c: reasonably generic counted 2-3-4 tree routines.
- *
- * This file is copyright 1999-2001 Simon Tatham.
- *
- * Permission is hereby granted, free of charge, to any person
- * obtaining a copy of this software and associated documentation
- * files (the "Software"), to deal in the Software without
- * restriction, including without limitation the rights to use,
- * copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
- * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
- * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <assert.h>
- #include "defs.h"
- #include "tree234.h"
- #include "puttymem.h"
- #ifdef TEST
- static int verbose = 0;
- #define LOG(x) do \
- { \
- if (verbose > 2) \
- printf x; \
- } while (0)
- #else
- #define LOG(x)
- #endif
- typedef struct node234_Tag node234;
- struct tree234_Tag {
- node234 *root;
- cmpfn234 cmp;
- };
- struct node234_Tag {
- node234 *parent;
- node234 *kids[4];
- int counts[4];
- void *elems[3];
- };
- /*
- * Create a 2-3-4 tree.
- */
- tree234 *newtree234(cmpfn234 cmp)
- {
- tree234 *t = snew(tree234);
- LOG(("created tree %p\n", t));
- t->root = NULL;
- t->cmp = cmp;
- return t;
- }
- /*
- * Free a 2-3-4 tree (not including freeing the elements).
- */
- static void freenode234(node234 *n)
- {
- if (!n)
- return;
- freenode234(n->kids[0]);
- freenode234(n->kids[1]);
- freenode234(n->kids[2]);
- freenode234(n->kids[3]);
- sfree(n);
- }
- void freetree234(tree234 *t)
- {
- freenode234(t->root);
- sfree(t);
- }
- /*
- * Internal function to count a node.
- */
- static int countnode234(node234 *n)
- {
- int count = 0;
- int i;
- if (!n)
- return 0;
- for (i = 0; i < 4; i++)
- count += n->counts[i];
- for (i = 0; i < 3; i++)
- if (n->elems[i])
- count++;
- return count;
- }
- /*
- * Internal function to return the number of elements in a node.
- */
- static int elements234(node234 *n)
- {
- int i;
- for (i = 0; i < 3; i++)
- if (!n->elems[i])
- break;
- return i;
- }
- /*
- * Count the elements in a tree.
- */
- int count234(tree234 *t)
- {
- if (t->root)
- return countnode234(t->root);
- else
- return 0;
- }
- /*
- * Add an element e to a 2-3-4 tree t. Returns e on success, or if
- * an existing element compares equal, returns that.
- */
- static void *add234_internal(tree234 *t, void *e, int index)
- {
- node234 *n, **np, *left, *right;
- void *orig_e = e;
- int c, lcount, rcount;
- LOG(("adding node %p to tree %p\n", e, t));
- if (t->root == NULL) {
- t->root = snew(node234);
- t->root->elems[1] = t->root->elems[2] = NULL;
- t->root->kids[0] = t->root->kids[1] = NULL;
- t->root->kids[2] = t->root->kids[3] = NULL;
- t->root->counts[0] = t->root->counts[1] = 0;
- t->root->counts[2] = t->root->counts[3] = 0;
- t->root->parent = NULL;
- t->root->elems[0] = e;
- LOG((" created root %p\n", t->root));
- return orig_e;
- }
- n = NULL; /* placate gcc; will always be set below since t->root != NULL */
- np = &t->root;
- while (*np) {
- int childnum;
- n = *np;
- LOG((" node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",
- n,
- n->kids[0], n->counts[0], n->elems[0],
- n->kids[1], n->counts[1], n->elems[1],
- n->kids[2], n->counts[2], n->elems[2],
- n->kids[3], n->counts[3]));
- if (index >= 0) {
- if (!n->kids[0]) {
- /*
- * Leaf node. We want to insert at kid position
- * equal to the index:
- *
- * 0 A 1 B 2 C 3
- */
- childnum = index;
- } else {
- /*
- * Internal node. We always descend through it (add
- * always starts at the bottom, never in the
- * middle).
- */
- do { /* this is a do ... while (0) to allow `break' */
- if (index <= n->counts[0]) {
- childnum = 0;
- break;
- }
- index -= n->counts[0] + 1;
- if (index <= n->counts[1]) {
- childnum = 1;
- break;
- }
- index -= n->counts[1] + 1;
- if (index <= n->counts[2]) {
- childnum = 2;
- break;
- }
- index -= n->counts[2] + 1;
- if (index <= n->counts[3]) {
- childnum = 3;
- break;
- }
- return NULL; /* error: index out of range */
- } while (0);
- }
- } else {
- if ((c = t->cmp(e, n->elems[0])) < 0)
- childnum = 0;
- else if (c == 0)
- return n->elems[0]; /* already exists */
- else if (n->elems[1] == NULL
- || (c = t->cmp(e, n->elems[1])) < 0) childnum = 1;
- else if (c == 0)
- return n->elems[1]; /* already exists */
- else if (n->elems[2] == NULL
- || (c = t->cmp(e, n->elems[2])) < 0) childnum = 2;
- else if (c == 0)
- return n->elems[2]; /* already exists */
- else
- childnum = 3;
- }
- np = &n->kids[childnum];
- LOG((" moving to child %d (%p)\n", childnum, *np));
- }
- /*
- * We need to insert the new element in n at position np.
- */
- left = NULL;
- lcount = 0;
- right = NULL;
- rcount = 0;
- while (n) {
- LOG((" at %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",
- n,
- n->kids[0], n->counts[0], n->elems[0],
- n->kids[1], n->counts[1], n->elems[1],
- n->kids[2], n->counts[2], n->elems[2],
- n->kids[3], n->counts[3]));
- LOG((" need to insert %p/%d [%p] %p/%d at position %d\n",
- left, lcount, e, right, rcount, (int)(np - n->kids)));
- if (n->elems[1] == NULL) {
- /*
- * Insert in a 2-node; simple.
- */
- if (np == &n->kids[0]) {
- LOG((" inserting on left of 2-node\n"));
- n->kids[2] = n->kids[1];
- n->counts[2] = n->counts[1];
- n->elems[1] = n->elems[0];
- n->kids[1] = right;
- n->counts[1] = rcount;
- n->elems[0] = e;
- n->kids[0] = left;
- n->counts[0] = lcount;
- } else { /* np == &n->kids[1] */
- LOG((" inserting on right of 2-node\n"));
- n->kids[2] = right;
- n->counts[2] = rcount;
- n->elems[1] = e;
- n->kids[1] = left;
- n->counts[1] = lcount;
- }
- if (n->kids[0])
- n->kids[0]->parent = n;
- if (n->kids[1])
- n->kids[1]->parent = n;
- if (n->kids[2])
- n->kids[2]->parent = n;
- LOG((" done\n"));
- break;
- } else if (n->elems[2] == NULL) {
- /*
- * Insert in a 3-node; simple.
- */
- if (np == &n->kids[0]) {
- LOG((" inserting on left of 3-node\n"));
- n->kids[3] = n->kids[2];
- n->counts[3] = n->counts[2];
- n->elems[2] = n->elems[1];
- n->kids[2] = n->kids[1];
- n->counts[2] = n->counts[1];
- n->elems[1] = n->elems[0];
- n->kids[1] = right;
- n->counts[1] = rcount;
- n->elems[0] = e;
- n->kids[0] = left;
- n->counts[0] = lcount;
- } else if (np == &n->kids[1]) {
- LOG((" inserting in middle of 3-node\n"));
- n->kids[3] = n->kids[2];
- n->counts[3] = n->counts[2];
- n->elems[2] = n->elems[1];
- n->kids[2] = right;
- n->counts[2] = rcount;
- n->elems[1] = e;
- n->kids[1] = left;
- n->counts[1] = lcount;
- } else { /* np == &n->kids[2] */
- LOG((" inserting on right of 3-node\n"));
- n->kids[3] = right;
- n->counts[3] = rcount;
- n->elems[2] = e;
- n->kids[2] = left;
- n->counts[2] = lcount;
- }
- if (n->kids[0])
- n->kids[0]->parent = n;
- if (n->kids[1])
- n->kids[1]->parent = n;
- if (n->kids[2])
- n->kids[2]->parent = n;
- if (n->kids[3])
- n->kids[3]->parent = n;
- LOG((" done\n"));
- break;
- } else {
- node234 *m = snew(node234);
- m->parent = n->parent;
- LOG((" splitting a 4-node; created new node %p\n", m));
- /*
- * Insert in a 4-node; split into a 2-node and a
- * 3-node, and move focus up a level.
- *
- * I don't think it matters which way round we put the
- * 2 and the 3. For simplicity, we'll put the 3 first
- * always.
- */
- if (np == &n->kids[0]) {
- m->kids[0] = left;
- m->counts[0] = lcount;
- m->elems[0] = e;
- m->kids[1] = right;
- m->counts[1] = rcount;
- m->elems[1] = n->elems[0];
- m->kids[2] = n->kids[1];
- m->counts[2] = n->counts[1];
- e = n->elems[1];
- n->kids[0] = n->kids[2];
- n->counts[0] = n->counts[2];
- n->elems[0] = n->elems[2];
- n->kids[1] = n->kids[3];
- n->counts[1] = n->counts[3];
- } else if (np == &n->kids[1]) {
- m->kids[0] = n->kids[0];
- m->counts[0] = n->counts[0];
- m->elems[0] = n->elems[0];
- m->kids[1] = left;
- m->counts[1] = lcount;
- m->elems[1] = e;
- m->kids[2] = right;
- m->counts[2] = rcount;
- e = n->elems[1];
- n->kids[0] = n->kids[2];
- n->counts[0] = n->counts[2];
- n->elems[0] = n->elems[2];
- n->kids[1] = n->kids[3];
- n->counts[1] = n->counts[3];
- } else if (np == &n->kids[2]) {
- m->kids[0] = n->kids[0];
- m->counts[0] = n->counts[0];
- m->elems[0] = n->elems[0];
- m->kids[1] = n->kids[1];
- m->counts[1] = n->counts[1];
- m->elems[1] = n->elems[1];
- m->kids[2] = left;
- m->counts[2] = lcount;
- /* e = e; */
- n->kids[0] = right;
- n->counts[0] = rcount;
- n->elems[0] = n->elems[2];
- n->kids[1] = n->kids[3];
- n->counts[1] = n->counts[3];
- } else { /* np == &n->kids[3] */
- m->kids[0] = n->kids[0];
- m->counts[0] = n->counts[0];
- m->elems[0] = n->elems[0];
- m->kids[1] = n->kids[1];
- m->counts[1] = n->counts[1];
- m->elems[1] = n->elems[1];
- m->kids[2] = n->kids[2];
- m->counts[2] = n->counts[2];
- n->kids[0] = left;
- n->counts[0] = lcount;
- n->elems[0] = e;
- n->kids[1] = right;
- n->counts[1] = rcount;
- e = n->elems[2];
- }
- m->kids[3] = n->kids[3] = n->kids[2] = NULL;
- m->counts[3] = n->counts[3] = n->counts[2] = 0;
- m->elems[2] = n->elems[2] = n->elems[1] = NULL;
- if (m->kids[0])
- m->kids[0]->parent = m;
- if (m->kids[1])
- m->kids[1]->parent = m;
- if (m->kids[2])
- m->kids[2]->parent = m;
- if (n->kids[0])
- n->kids[0]->parent = n;
- if (n->kids[1])
- n->kids[1]->parent = n;
- LOG((" left (%p): %p/%d [%p] %p/%d [%p] %p/%d\n", m,
- m->kids[0], m->counts[0], m->elems[0],
- m->kids[1], m->counts[1], m->elems[1],
- m->kids[2], m->counts[2]));
- LOG((" right (%p): %p/%d [%p] %p/%d\n", n,
- n->kids[0], n->counts[0], n->elems[0],
- n->kids[1], n->counts[1]));
- left = m;
- lcount = countnode234(left);
- right = n;
- rcount = countnode234(right);
- }
- if (n->parent)
- np = (n->parent->kids[0] == n ? &n->parent->kids[0] :
- n->parent->kids[1] == n ? &n->parent->kids[1] :
- n->parent->kids[2] == n ? &n->parent->kids[2] :
- &n->parent->kids[3]);
- n = n->parent;
- }
- /*
- * If we've come out of here by `break', n will still be
- * non-NULL and all we need to do is go back up the tree
- * updating counts. If we've come here because n is NULL, we
- * need to create a new root for the tree because the old one
- * has just split into two. */
- if (n) {
- while (n->parent) {
- int count = countnode234(n);
- int childnum;
- childnum = (n->parent->kids[0] == n ? 0 :
- n->parent->kids[1] == n ? 1 :
- n->parent->kids[2] == n ? 2 : 3);
- n->parent->counts[childnum] = count;
- n = n->parent;
- }
- } else {
- LOG((" root is overloaded, split into two\n"));
- t->root = snew(node234);
- t->root->kids[0] = left;
- t->root->counts[0] = lcount;
- t->root->elems[0] = e;
- t->root->kids[1] = right;
- t->root->counts[1] = rcount;
- t->root->elems[1] = NULL;
- t->root->kids[2] = NULL;
- t->root->counts[2] = 0;
- t->root->elems[2] = NULL;
- t->root->kids[3] = NULL;
- t->root->counts[3] = 0;
- t->root->parent = NULL;
- if (t->root->kids[0])
- t->root->kids[0]->parent = t->root;
- if (t->root->kids[1])
- t->root->kids[1]->parent = t->root;
- LOG((" new root is %p/%d [%p] %p/%d\n",
- t->root->kids[0], t->root->counts[0],
- t->root->elems[0], t->root->kids[1], t->root->counts[1]));
- }
- return orig_e;
- }
- void *add234(tree234 *t, void *e)
- {
- if (!t->cmp) /* tree is unsorted */
- return NULL;
- return add234_internal(t, e, -1);
- }
- void *addpos234(tree234 *t, void *e, int index)
- {
- if (index < 0 || /* index out of range */
- t->cmp) /* tree is sorted */
- return NULL; /* return failure */
- return add234_internal(t, e, index); /* this checks the upper bound */
- }
- /*
- * Look up the element at a given numeric index in a 2-3-4 tree.
- * Returns NULL if the index is out of range.
- */
- void *index234(tree234 *t, int index)
- {
- node234 *n;
- if (!t->root)
- return NULL; /* tree is empty */
- if (index < 0 || index >= countnode234(t->root))
- return NULL; /* out of range */
- n = t->root;
- while (n) {
- if (index < n->counts[0])
- n = n->kids[0];
- else if (index -= n->counts[0] + 1, index < 0)
- return n->elems[0];
- else if (index < n->counts[1])
- n = n->kids[1];
- else if (index -= n->counts[1] + 1, index < 0)
- return n->elems[1];
- else if (index < n->counts[2])
- n = n->kids[2];
- else if (index -= n->counts[2] + 1, index < 0)
- return n->elems[2];
- else
- n = n->kids[3];
- }
- /* We shouldn't ever get here. I wonder how we did. */
- return NULL;
- }
- /*
- * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
- * found. e is always passed as the first argument to cmp, so cmp
- * can be an asymmetric function if desired. cmp can also be passed
- * as NULL, in which case the compare function from the tree proper
- * will be used.
- */
- void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
- int relation, int *index)
- {
- search234_state ss;
- int reldir = (relation == REL234_LT || relation == REL234_LE ? -1 :
- relation == REL234_GT || relation == REL234_GE ? +1 : 0);
- bool equal_permitted = (relation != REL234_LT && relation != REL234_GT);
- void *toret;
- /* Only LT / GT relations are permitted with a null query element. */
- assert(!(equal_permitted && !e));
- if (cmp == NULL)
- cmp = t->cmp;
- search234_start(&ss, t);
- while (ss.element) {
- int cmpret;
- if (e) {
- cmpret = cmp(e, ss.element);
- } else {
- cmpret = -reldir; /* invent a fixed compare result */
- }
- if (cmpret == 0) {
- /*
- * We've found an element that compares exactly equal to
- * the query element.
- */
- if (equal_permitted) {
- /* If our search relation permits equality, we've
- * finished already. */
- if (index)
- *index = ss.index;
- return ss.element;
- } else {
- /* Otherwise, pretend this element was slightly too
- * big/small, according to the direction of search. */
- cmpret = reldir;
- }
- }
- search234_step(&ss, cmpret);
- }
- /*
- * No element compares equal to the one we were after, but
- * ss.index indicates the index that element would have if it were
- * inserted.
- *
- * So if our search relation is EQ, we must simply return failure.
- */
- if (relation == REL234_EQ)
- return NULL;
- /*
- * Otherwise, we must do an index lookup for the previous index
- * (if we're going left - LE or LT) or this index (if we're going
- * right - GE or GT).
- */
- if (relation == REL234_LT || relation == REL234_LE) {
- ss.index--;
- }
- /*
- * We know the index of the element we want; just call index234
- * to do the rest. This will return NULL if the index is out of
- * bounds, which is exactly what we want.
- */
- toret = index234(t, ss.index);
- if (toret && index)
- *index = ss.index;
- return toret;
- }
- void *find234(tree234 *t, void *e, cmpfn234 cmp)
- {
- return findrelpos234(t, e, cmp, REL234_EQ, NULL);
- }
- void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation)
- {
- return findrelpos234(t, e, cmp, relation, NULL);
- }
- void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index)
- {
- return findrelpos234(t, e, cmp, REL234_EQ, index);
- }
- void search234_start(search234_state *state, tree234 *t)
- {
- state->_node = t->root;
- state->_base = 0; /* index of first element in this node's subtree */
- state->_last = -1; /* indicate that this node is not previously visited */
- search234_step(state, 0);
- }
- void search234_step(search234_state *state, int direction)
- {
- node234 *node = state->_node;
- int i;
- if (!node) {
- state->element = NULL;
- state->index = 0;
- return;
- }
- if (state->_last != -1) {
- /*
- * We're already pointing at some element of a node, so we
- * should restrict to the elements left or right of it,
- * depending on the requested search direction.
- */
- assert(direction);
- assert(node);
- if (direction > 0)
- state->_lo = state->_last + 1;
- else
- state->_hi = state->_last - 1;
- if (state->_lo > state->_hi) {
- /*
- * We've run out of elements in this node, i.e. we've
- * narrowed to nothing but a child pointer. Descend to
- * that child, and update _base to the leftmost index of
- * its subtree.
- */
- for (i = 0; i < state->_lo; i++)
- state->_base += 1 + node->counts[i];
- state->_node = node = node->kids[state->_lo];
- state->_last = -1;
- }
- }
- if (state->_last == -1) {
- /*
- * We've just entered a new node - either because of the above
- * code, or because we were called from search234_start - and
- * anything in that node is a viable answer.
- */
- state->_lo = 0;
- state->_hi = node ? elements234(node)-1 : 0;
- }
- /*
- * Now we've got something we can return.
- */
- if (!node) {
- state->element = NULL;
- state->index = state->_base;
- } else {
- state->_last = (state->_lo + state->_hi) / 2;
- state->element = node->elems[state->_last];
- state->index = state->_base + state->_last;
- for (i = 0; i <= state->_last; i++)
- state->index += node->counts[i];
- }
- }
- /*
- * Delete an element e in a 2-3-4 tree. Does not free the element,
- * merely removes all links to it from the tree nodes.
- */
- static void *delpos234_internal(tree234 *t, int index)
- {
- node234 *n;
- void *retval;
- int ei = -1;
- retval = 0;
- n = t->root;
- LOG(("deleting item %d from tree %p\n", index, t));
- while (1) {
- while (n) {
- int ki;
- node234 *sub;
- LOG(
- (" node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d index=%d\n",
- n, n->kids[0], n->counts[0], n->elems[0], n->kids[1],
- n->counts[1], n->elems[1], n->kids[2], n->counts[2],
- n->elems[2], n->kids[3], n->counts[3], index));
- if (index < n->counts[0]) {
- ki = 0;
- } else if (index -= n->counts[0] + 1, index < 0) {
- ei = 0;
- break;
- } else if (index < n->counts[1]) {
- ki = 1;
- } else if (index -= n->counts[1] + 1, index < 0) {
- ei = 1;
- break;
- } else if (index < n->counts[2]) {
- ki = 2;
- } else if (index -= n->counts[2] + 1, index < 0) {
- ei = 2;
- break;
- } else {
- ki = 3;
- }
- /*
- * Recurse down to subtree ki. If it has only one element,
- * we have to do some transformation to start with.
- */
- LOG((" moving to subtree %d\n", ki));
- sub = n->kids[ki];
- if (!sub->elems[1]) {
- LOG((" subtree has only one element!\n"));
- if (ki > 0 && n->kids[ki - 1]->elems[1]) {
- /*
- * Case 3a, left-handed variant. Child ki has
- * only one element, but child ki-1 has two or
- * more. So we need to move a subtree from ki-1
- * to ki.
- *
- * . C . . B .
- * / \ -> / \
- * [more] a A b B c d D e [more] a A b c C d D e
- */
- node234 *sib = n->kids[ki - 1];
- int lastelem = (sib->elems[2] ? 2 :
- sib->elems[1] ? 1 : 0);
- sub->kids[2] = sub->kids[1];
- sub->counts[2] = sub->counts[1];
- sub->elems[1] = sub->elems[0];
- sub->kids[1] = sub->kids[0];
- sub->counts[1] = sub->counts[0];
- sub->elems[0] = n->elems[ki - 1];
- sub->kids[0] = sib->kids[lastelem + 1];
- sub->counts[0] = sib->counts[lastelem + 1];
- if (sub->kids[0])
- sub->kids[0]->parent = sub;
- n->elems[ki - 1] = sib->elems[lastelem];
- sib->kids[lastelem + 1] = NULL;
- sib->counts[lastelem + 1] = 0;
- sib->elems[lastelem] = NULL;
- n->counts[ki] = countnode234(sub);
- LOG((" case 3a left\n"));
- LOG(
- (" index and left subtree count before adjustment: %d, %d\n",
- index, n->counts[ki - 1]));
- index += n->counts[ki - 1];
- n->counts[ki - 1] = countnode234(sib);
- index -= n->counts[ki - 1];
- LOG(
- (" index and left subtree count after adjustment: %d, %d\n",
- index, n->counts[ki - 1]));
- } else if (ki < 3 && n->kids[ki + 1]
- && n->kids[ki + 1]->elems[1]) {
- /*
- * Case 3a, right-handed variant. ki has only
- * one element but ki+1 has two or more. Move a
- * subtree from ki+1 to ki.
- *
- * . B . . C .
- * / \ -> / \
- * a A b c C d D e [more] a A b B c d D e [more]
- */
- node234 *sib = n->kids[ki + 1];
- int j;
- sub->elems[1] = n->elems[ki];
- sub->kids[2] = sib->kids[0];
- sub->counts[2] = sib->counts[0];
- if (sub->kids[2])
- sub->kids[2]->parent = sub;
- n->elems[ki] = sib->elems[0];
- sib->kids[0] = sib->kids[1];
- sib->counts[0] = sib->counts[1];
- for (j = 0; j < 2 && sib->elems[j + 1]; j++) {
- sib->kids[j + 1] = sib->kids[j + 2];
- sib->counts[j + 1] = sib->counts[j + 2];
- sib->elems[j] = sib->elems[j + 1];
- }
- sib->kids[j + 1] = NULL;
- sib->counts[j + 1] = 0;
- sib->elems[j] = NULL;
- n->counts[ki] = countnode234(sub);
- n->counts[ki + 1] = countnode234(sib);
- LOG((" case 3a right\n"));
- } else {
- /*
- * Case 3b. ki has only one element, and has no
- * neighbour with more than one. So pick a
- * neighbour and merge it with ki, taking an
- * element down from n to go in the middle.
- *
- * . B . .
- * / \ -> |
- * a A b c C d a A b B c C d
- *
- * (Since at all points we have avoided
- * descending to a node with only one element,
- * we can be sure that n is not reduced to
- * nothingness by this move, _unless_ it was
- * the very first node, ie the root of the
- * tree. In that case we remove the now-empty
- * root and replace it with its single large
- * child as shown.)
- */
- node234 *sib;
- int j;
- if (ki > 0) {
- ki--;
- index += n->counts[ki] + 1;
- }
- sib = n->kids[ki];
- sub = n->kids[ki + 1];
- sub->kids[3] = sub->kids[1];
- sub->counts[3] = sub->counts[1];
- sub->elems[2] = sub->elems[0];
- sub->kids[2] = sub->kids[0];
- sub->counts[2] = sub->counts[0];
- sub->elems[1] = n->elems[ki];
- sub->kids[1] = sib->kids[1];
- sub->counts[1] = sib->counts[1];
- if (sub->kids[1])
- sub->kids[1]->parent = sub;
- sub->elems[0] = sib->elems[0];
- sub->kids[0] = sib->kids[0];
- sub->counts[0] = sib->counts[0];
- if (sub->kids[0])
- sub->kids[0]->parent = sub;
- n->counts[ki + 1] = countnode234(sub);
- sfree(sib);
- /*
- * That's built the big node in sub. Now we
- * need to remove the reference to sib in n.
- */
- for (j = ki; j < 3 && n->kids[j + 1]; j++) {
- n->kids[j] = n->kids[j + 1];
- n->counts[j] = n->counts[j + 1];
- n->elems[j] = j < 2 ? n->elems[j + 1] : NULL;
- }
- n->kids[j] = NULL;
- n->counts[j] = 0;
- if (j < 3)
- n->elems[j] = NULL;
- LOG((" case 3b ki=%d\n", ki));
- if (!n->elems[0]) {
- /*
- * The root is empty and needs to be
- * removed.
- */
- LOG((" shifting root!\n"));
- t->root = sub;
- sub->parent = NULL;
- sfree(n);
- }
- }
- }
- n = sub;
- }
- if (!retval)
- retval = n->elems[ei];
- if (ei == -1)
- return NULL; /* although this shouldn't happen */
- /*
- * Treat special case: this is the one remaining item in
- * the tree. n is the tree root (no parent), has one
- * element (no elems[1]), and has no kids (no kids[0]).
- */
- if (!n->parent && !n->elems[1] && !n->kids[0]) {
- LOG((" removed last element in tree\n"));
- sfree(n);
- t->root = NULL;
- return retval;
- }
- /*
- * Now we have the element we want, as n->elems[ei], and we
- * have also arranged for that element not to be the only
- * one in its node. So...
- */
- if (!n->kids[0] && n->elems[1]) {
- /*
- * Case 1. n is a leaf node with more than one element,
- * so it's _really easy_. Just delete the thing and
- * we're done.
- */
- int i;
- LOG((" case 1\n"));
- for (i = ei; i < 2 && n->elems[i + 1]; i++)
- n->elems[i] = n->elems[i + 1];
- n->elems[i] = NULL;
- /*
- * Having done that to the leaf node, we now go back up
- * the tree fixing the counts.
- */
- while (n->parent) {
- int childnum;
- childnum = (n->parent->kids[0] == n ? 0 :
- n->parent->kids[1] == n ? 1 :
- n->parent->kids[2] == n ? 2 : 3);
- n->parent->counts[childnum]--;
- n = n->parent;
- }
- return retval; /* finished! */
- } else if (n->kids[ei]->elems[1]) {
- /*
- * Case 2a. n is an internal node, and the root of the
- * subtree to the left of e has more than one element.
- * So find the predecessor p to e (ie the largest node
- * in that subtree), place it where e currently is, and
- * then start the deletion process over again on the
- * subtree with p as target.
- */
- node234 *m = n->kids[ei];
- void *target;
- LOG((" case 2a\n"));
- while (m->kids[0]) {
- m = (m->kids[3] ? m->kids[3] :
- m->kids[2] ? m->kids[2] :
- m->kids[1] ? m->kids[1] : m->kids[0]);
- }
- target = (m->elems[2] ? m->elems[2] :
- m->elems[1] ? m->elems[1] : m->elems[0]);
- n->elems[ei] = target;
- index = n->counts[ei] - 1;
- n = n->kids[ei];
- } else if (n->kids[ei + 1]->elems[1]) {
- /*
- * Case 2b, symmetric to 2a but s/left/right/ and
- * s/predecessor/successor/. (And s/largest/smallest/).
- */
- node234 *m = n->kids[ei + 1];
- void *target;
- LOG((" case 2b\n"));
- while (m->kids[0]) {
- m = m->kids[0];
- }
- target = m->elems[0];
- n->elems[ei] = target;
- n = n->kids[ei + 1];
- index = 0;
- } else {
- /*
- * Case 2c. n is an internal node, and the subtrees to
- * the left and right of e both have only one element.
- * So combine the two subnodes into a single big node
- * with their own elements on the left and right and e
- * in the middle, then restart the deletion process on
- * that subtree, with e still as target.
- */
- node234 *a = n->kids[ei], *b = n->kids[ei + 1];
- int j;
- LOG((" case 2c\n"));
- a->elems[1] = n->elems[ei];
- a->kids[2] = b->kids[0];
- a->counts[2] = b->counts[0];
- if (a->kids[2])
- a->kids[2]->parent = a;
- a->elems[2] = b->elems[0];
- a->kids[3] = b->kids[1];
- a->counts[3] = b->counts[1];
- if (a->kids[3])
- a->kids[3]->parent = a;
- sfree(b);
- n->counts[ei] = countnode234(a);
- /*
- * That's built the big node in a, and destroyed b. Now
- * remove the reference to b (and e) in n.
- */
- for (j = ei; j < 2 && n->elems[j + 1]; j++) {
- n->elems[j] = n->elems[j + 1];
- n->kids[j + 1] = n->kids[j + 2];
- n->counts[j + 1] = n->counts[j + 2];
- }
- n->elems[j] = NULL;
- n->kids[j + 1] = NULL;
- n->counts[j + 1] = 0;
- /*
- * It's possible, in this case, that we've just removed
- * the only element in the root of the tree. If so,
- * shift the root.
- */
- if (n->elems[0] == NULL) {
- LOG((" shifting root!\n"));
- t->root = a;
- a->parent = NULL;
- sfree(n);
- }
- /*
- * Now go round the deletion process again, with n
- * pointing at the new big node and e still the same.
- */
- n = a;
- index = a->counts[0] + a->counts[1] + 1;
- }
- }
- }
- void *delpos234(tree234 *t, int index)
- {
- if (index < 0 || index >= countnode234(t->root))
- return NULL;
- return delpos234_internal(t, index);
- }
- void *del234(tree234 *t, void *e)
- {
- int index;
- if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
- return NULL; /* it wasn't in there anyway */
- return delpos234_internal(t, index); /* it's there; delete it. */
- }
- #ifdef TEST
- /*
- * Test code for the 2-3-4 tree. This code maintains an alternative
- * representation of the data in the tree, in an array (using the
- * obvious and slow insert and delete functions). After each tree
- * operation, the verify() function is called, which ensures all
- * the tree properties are preserved:
- * - node->child->parent always equals node
- * - tree->root->parent always equals NULL
- * - number of kids == 0 or number of elements + 1;
- * - tree has the same depth everywhere
- * - every node has at least one element
- * - subtree element counts are accurate
- * - any NULL kid pointer is accompanied by a zero count
- * - in a sorted tree: ordering property between elements of a
- * node and elements of its children is preserved
- * and also ensures the list represented by the tree is the same
- * list it should be. (This last check also doubly verifies the
- * ordering properties, because the `same list it should be' is by
- * definition correctly ordered. It also ensures all nodes are
- * distinct, because the enum functions would get caught in a loop
- * if not.)
- */
- #include <stdarg.h>
- #include <string.h>
- int n_errors = 0;
- /*
- * Error reporting function.
- */
- PRINTF_LIKE(1, 2) void error(char *fmt, ...)
- {
- va_list ap;
- printf("ERROR: ");
- va_start(ap, fmt);
- vfprintf(stdout, fmt, ap);
- va_end(ap);
- printf("\n");
- n_errors++;
- }
- /* The array representation of the data. */
- void **array;
- int arraylen, arraysize;
- cmpfn234 cmp;
- /* The tree representation of the same data. */
- tree234 *tree;
- typedef struct {
- int treedepth;
- int elemcount;
- } chkctx;
- int chknode(chkctx *ctx, int level, node234 *node,
- void *lowbound, void *highbound)
- {
- int nkids, nelems;
- int i;
- int count;
- /* Count the non-NULL kids. */
- for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
- /* Ensure no kids beyond the first NULL are non-NULL. */
- for (i = nkids; i < 4; i++)
- if (node->kids[i]) {
- error("node %p: nkids=%d but kids[%d] non-NULL",
- node, nkids, i);
- } else if (node->counts[i]) {
- error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
- node, i, i, node->counts[i]);
- }
- /* Count the non-NULL elements. */
- for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
- /* Ensure no elements beyond the first NULL are non-NULL. */
- for (i = nelems; i < 3; i++)
- if (node->elems[i]) {
- error("node %p: nelems=%d but elems[%d] non-NULL",
- node, nelems, i);
- }
- if (nkids == 0) {
- /*
- * If nkids==0, this is a leaf node; verify that the tree
- * depth is the same everywhere.
- */
- if (ctx->treedepth < 0)
- ctx->treedepth = level; /* we didn't know the depth yet */
- else if (ctx->treedepth != level)
- error("node %p: leaf at depth %d, previously seen depth %d",
- node, level, ctx->treedepth);
- } else {
- /*
- * If nkids != 0, then it should be nelems+1, unless nelems
- * is 0 in which case nkids should also be 0 (and so we
- * shouldn't be in this condition at all).
- */
- int shouldkids = (nelems ? nelems + 1 : 0);
- if (nkids != shouldkids) {
- error("node %p: %d elems should mean %d kids but has %d",
- node, nelems, shouldkids, nkids);
- }
- }
- /*
- * nelems should be at least 1.
- */
- if (nelems == 0) {
- error("node %p: no elems", node);
- }
- /*
- * Add nelems to the running element count of the whole tree.
- */
- ctx->elemcount += nelems;
- /*
- * Check ordering property: all elements should be strictly >
- * lowbound, strictly < highbound, and strictly < each other in
- * sequence. (lowbound and highbound are NULL at edges of tree
- * - both NULL at root node - and NULL is considered to be <
- * everything and > everything. IYSWIM.)
- */
- if (cmp) {
- for (i = -1; i < nelems; i++) {
- void *lower = (i == -1 ? lowbound : node->elems[i]);
- void *higher =
- (i + 1 == nelems ? highbound : node->elems[i + 1]);
- if (lower && higher && cmp(lower, higher) >= 0) {
- error("node %p: kid comparison [%d=%s,%d=%s] failed",
- node, i, (char *)lower, i + 1, (char *)higher);
- }
- }
- }
- /*
- * Check parent pointers: all non-NULL kids should have a
- * parent pointer coming back to this node.
- */
- for (i = 0; i < nkids; i++)
- if (node->kids[i]->parent != node) {
- error("node %p kid %d: parent ptr is %p not %p",
- node, i, node->kids[i]->parent, node);
- }
- /*
- * Now (finally!) recurse into subtrees.
- */
- count = nelems;
- for (i = 0; i < nkids; i++) {
- void *lower = (i == 0 ? lowbound : node->elems[i - 1]);
- void *higher = (i >= nelems ? highbound : node->elems[i]);
- int subcount =
- chknode(ctx, level + 1, node->kids[i], lower, higher);
- if (node->counts[i] != subcount) {
- error("node %p kid %d: count says %d, subtree really has %d",
- node, i, node->counts[i], subcount);
- }
- count += subcount;
- }
- return count;
- }
- void verify(void)
- {
- chkctx ctx[1];
- int i;
- void *p;
- ctx->treedepth = -1; /* depth unknown yet */
- ctx->elemcount = 0; /* no elements seen yet */
- /*
- * Verify validity of tree properties.
- */
- if (tree->root) {
- if (tree->root->parent != NULL)
- error("root->parent is %p should be null", tree->root->parent);
- chknode(ctx, 0, tree->root, NULL, NULL);
- }
- if (verbose)
- printf("tree depth: %d\n", ctx->treedepth);
- /*
- * Enumerate the tree and ensure it matches up to the array.
- */
- for (i = 0; NULL != (p = index234(tree, i)); i++) {
- if (i >= arraylen)
- error("tree contains more than %d elements", arraylen);
- if (array[i] != p)
- error("enum at position %d: array says %s, tree says %s",
- i, (char *)array[i], (char *)p);
- }
- if (ctx->elemcount != i) {
- error("tree really contains %d elements, enum gave %d",
- ctx->elemcount, i);
- }
- if (i < arraylen) {
- error("enum gave only %d elements, array has %d", i, arraylen);
- }
- i = count234(tree);
- if (ctx->elemcount != i) {
- error("tree really contains %d elements, count234 gave %d",
- ctx->elemcount, i);
- }
- }
- void internal_addtest(void *elem, int index, void *realret)
- {
- int i, j;
- void *retval;
- if (arraysize < arraylen + 1) {
- arraysize = arraylen + 1 + 256;
- array = sresize(array, arraysize, void *);
- }
- i = index;
- /* now i points to the first element >= elem */
- retval = elem; /* expect elem returned (success) */
- for (j = arraylen; j > i; j--)
- array[j] = array[j - 1];
- array[i] = elem; /* add elem to array */
- arraylen++;
- if (realret != retval) {
- error("add: retval was %p expected %p", realret, retval);
- }
- verify();
- }
- void addtest(void *elem)
- {
- int i;
- void *realret;
- realret = add234(tree, elem);
- i = 0;
- while (i < arraylen && cmp(elem, array[i]) > 0)
- i++;
- if (i < arraylen && !cmp(elem, array[i])) {
- void *retval = array[i]; /* expect that returned not elem */
- if (realret != retval) {
- error("add: retval was %p expected %p", realret, retval);
- }
- } else
- internal_addtest(elem, i, realret);
- }
- void addpostest(void *elem, int i)
- {
- void *realret;
- realret = addpos234(tree, elem, i);
- internal_addtest(elem, i, realret);
- }
- void delpostest(int i)
- {
- int index = i;
- void *elem = array[i], *ret;
- /* i points to the right element */
- while (i < arraylen - 1) {
- array[i] = array[i + 1];
- i++;
- }
- arraylen--; /* delete elem from array */
- if (tree->cmp)
- ret = del234(tree, elem);
- else
- ret = delpos234(tree, index);
- if (ret != elem) {
- error("del returned %p, expected %p", ret, elem);
- }
- verify();
- }
- void deltest(void *elem)
- {
- int i;
- i = 0;
- while (i < arraylen && cmp(elem, array[i]) > 0)
- i++;
- if (i >= arraylen || cmp(elem, array[i]) != 0)
- return; /* don't do it! */
- delpostest(i);
- }
- /* A sample data set and test utility. Designed for pseudo-randomness,
- * and yet repeatability. */
- /*
- * This random number generator uses the `portable implementation'
- * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
- * change it if not.
- */
- int randomnumber(unsigned *seed)
- {
- *seed *= 1103515245;
- *seed += 12345;
- return ((*seed) / 65536) % 32768;
- }
- int mycmp(void *av, void *bv)
- {
- char const *a = (char const *) av;
- char const *b = (char const *) bv;
- return strcmp(a, b);
- }
- #define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
- char *strings[] = {
- "a", "ab", "absque", "coram", "de",
- "palam", "clam", "cum", "ex", "e",
- "sine", "tenus", "pro", "prae",
- "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
- "penguin", "blancmange", "pangolin", "whale", "hedgehog",
- "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
- "murfl", "spoo", "breen", "flarn", "octothorpe",
- "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
- "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
- "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
- "wand", "ring", "amulet"
- };
- #define NSTR lenof(strings)
- void findtest(void)
- {
- const static int rels[] = {
- REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
- };
- const static char *const relnames[] = {
- "EQ", "GE", "LE", "LT", "GT"
- };
- int i, j, rel, index;
- char *p, *ret, *realret, *realret2;
- int lo, hi, mid, c;
- for (i = 0; i < NSTR; i++) {
- p = strings[i];
- for (j = 0; j < sizeof(rels) / sizeof(*rels); j++) {
- rel = rels[j];
- lo = 0;
- hi = arraylen - 1;
- while (lo <= hi) {
- mid = (lo + hi) / 2;
- c = strcmp(p, array[mid]);
- if (c < 0)
- hi = mid - 1;
- else if (c > 0)
- lo = mid + 1;
- else
- break;
- }
- if (c == 0) {
- if (rel == REL234_LT)
- ret = (mid > 0 ? array[--mid] : NULL);
- else if (rel == REL234_GT)
- ret = (mid < arraylen - 1 ? array[++mid] : NULL);
- else
- ret = array[mid];
- } else {
- assert(lo == hi + 1);
- if (rel == REL234_LT || rel == REL234_LE) {
- mid = hi;
- ret = (hi >= 0 ? array[hi] : NULL);
- } else if (rel == REL234_GT || rel == REL234_GE) {
- mid = lo;
- ret = (lo < arraylen ? array[lo] : NULL);
- } else
- ret = NULL;
- }
- realret = findrelpos234(tree, p, NULL, rel, &index);
- if (realret != ret) {
- error("find(\"%s\",%s) gave %s should be %s",
- p, relnames[j], realret, ret);
- }
- if (realret && index != mid) {
- error("find(\"%s\",%s) gave %d should be %d",
- p, relnames[j], index, mid);
- }
- if (realret && rel == REL234_EQ) {
- realret2 = index234(tree, index);
- if (realret2 != realret) {
- error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
- p, relnames[j], realret, index, index, realret2);
- }
- }
- if (verbose)
- printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
- realret, index);
- }
- }
- realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
- if (arraylen && (realret != array[0] || index != 0)) {
- error("find(NULL,GT) gave %s(%d) should be %s(0)",
- realret, index, (char *)array[0]);
- } else if (!arraylen && (realret != NULL)) {
- error("find(NULL,GT) gave %s(%d) should be NULL", realret, index);
- }
- realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
- if (arraylen
- && (realret != array[arraylen - 1] || index != arraylen - 1)) {
- error("find(NULL,LT) gave %s(%d) should be %s(0)", realret, index,
- (char *)array[arraylen - 1]);
- } else if (!arraylen && (realret != NULL)) {
- error("find(NULL,LT) gave %s(%d) should be NULL", realret, index);
- }
- }
- void searchtest_recurse(search234_state ss, int lo, int hi,
- char **expected, char *directionbuf,
- char *directionptr)
- {
- *directionptr = '\0';
- if (!ss.element) {
- if (lo != hi) {
- error("search234(%s) gave NULL for non-empty interval [%d,%d)",
- directionbuf, lo, hi);
- } else if (ss.index != lo) {
- error("search234(%s) gave index %d should be %d",
- directionbuf, ss.index, lo);
- } else {
- if (verbose)
- printf("%*ssearch234(%s) gave NULL,%d\n",
- (int)(directionptr-directionbuf) * 2, "", directionbuf,
- ss.index);
- }
- } else if (lo == hi) {
- error("search234(%s) gave %s for empty interval [%d,%d)",
- directionbuf, (char *)ss.element, lo, hi);
- } else if (ss.element != expected[ss.index]) {
- error("search234(%s) gave element %s should be %s",
- directionbuf, (char *)ss.element, expected[ss.index]);
- } else if (ss.index < lo || ss.index >= hi) {
- error("search234(%s) gave index %d should be in [%d,%d)",
- directionbuf, ss.index, lo, hi);
- return;
- } else {
- search234_state next;
- if (verbose)
- printf("%*ssearch234(%s) gave %s,%d\n",
- (int)(directionptr-directionbuf) * 2, "", directionbuf,
- (char *)ss.element, ss.index);
- next = ss;
- search234_step(&next, -1);
- *directionptr = '-';
- searchtest_recurse(next, lo, ss.index,
- expected, directionbuf, directionptr+1);
- next = ss;
- search234_step(&next, +1);
- *directionptr = '+';
- searchtest_recurse(next, ss.index+1, hi,
- expected, directionbuf, directionptr+1);
- }
- }
- void searchtest(void)
- {
- char *expected[NSTR], *p;
- char directionbuf[NSTR * 10];
- int n;
- search234_state ss;
- if (verbose)
- printf("beginning searchtest:");
- for (n = 0; (p = index234(tree, n)) != NULL; n++) {
- expected[n] = p;
- if (verbose)
- printf(" %d=%s", n, p);
- }
- if (verbose)
- printf(" count=%d\n", n);
- search234_start(&ss, tree);
- searchtest_recurse(ss, 0, n, expected, directionbuf, directionbuf);
- }
- void out_of_memory(void)
- {
- fprintf(stderr, "out of memory!\n");
- exit(2);
- }
- int main(int argc, char **argv)
- {
- int in[NSTR];
- int i, j, k;
- unsigned seed = 0;
- for (i = 1; i < argc; i++) {
- char *arg = argv[i];
- if (!strcmp(arg, "-v")) {
- verbose++;
- } else {
- fprintf(stderr, "unrecognised option '%s'\n", arg);
- return 1;
- }
- }
- for (i = 0; i < NSTR; i++)
- in[i] = 0;
- array = NULL;
- arraylen = arraysize = 0;
- tree = newtree234(mycmp);
- cmp = mycmp;
- verify();
- searchtest();
- for (i = 0; i < 10000; i++) {
- j = randomnumber(&seed);
- j %= NSTR;
- if (verbose)
- printf("trial: %d\n", i);
- if (in[j]) {
- if (verbose)
- printf("deleting %s (%d)\n", strings[j], j);
- deltest(strings[j]);
- in[j] = 0;
- } else {
- if (verbose)
- printf("adding %s (%d)\n", strings[j], j);
- addtest(strings[j]);
- in[j] = 1;
- }
- findtest();
- searchtest();
- }
- while (arraylen > 0) {
- j = randomnumber(&seed);
- j %= arraylen;
- deltest(array[j]);
- }
- freetree234(tree);
- /*
- * Now try an unsorted tree. We don't really need to test
- * delpos234 because we know del234 is based on it, so it's
- * already been tested in the above sorted-tree code; but for
- * completeness we'll use it to tear down our unsorted tree
- * once we've built it.
- */
- tree = newtree234(NULL);
- cmp = NULL;
- verify();
- for (i = 0; i < 1000; i++) {
- if (verbose)
- printf("trial: %d\n", i);
- j = randomnumber(&seed);
- j %= NSTR;
- k = randomnumber(&seed);
- k %= count234(tree) + 1;
- if (verbose)
- printf("adding string %s at index %d\n", strings[j], k);
- addpostest(strings[j], k);
- }
- while (count234(tree) > 0) {
- if (verbose)
- printf("cleanup: tree size %d\n", count234(tree));
- j = randomnumber(&seed);
- j %= count234(tree);
- if (verbose)
- printf("deleting string %s from index %d\n",
- (const char *)array[j], j);
- delpostest(j);
- }
- printf("%d errors found\n", n_errors);
- return (n_errors != 0);
- }
- #endif /* TEST */
|