123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- /*
- * RSA key generation.
- */
- #include <assert.h>
- #include "ssh.h"
- #include "sshkeygen.h"
- #include "mpint.h"
- #define RSA_EXPONENT 65537
- #define NFIRSTBITS 13
- static void invent_firstbits(unsigned *one, unsigned *two,
- unsigned min_separation);
- typedef struct RSAPrimeDetails RSAPrimeDetails;
- struct RSAPrimeDetails {
- bool strong;
- int bits, bitsm1m1, bitsm1, bitsp1;
- unsigned firstbits;
- ProgressPhase phase_main, phase_m1m1, phase_m1, phase_p1;
- };
- #define STRONG_MARGIN (20 + NFIRSTBITS)
- static RSAPrimeDetails setup_rsa_prime(
- int bits, bool strong, PrimeGenerationContext *pgc, ProgressReceiver *prog)
- {
- RSAPrimeDetails pd;
- pd.bits = bits;
- if (strong) {
- pd.bitsm1 = (bits - STRONG_MARGIN) / 2;
- pd.bitsp1 = (bits - STRONG_MARGIN) - pd.bitsm1;
- pd.bitsm1m1 = (pd.bitsm1 - STRONG_MARGIN) / 2;
- if (pd.bitsm1m1 < STRONG_MARGIN) {
- /* Absurdly small prime, but we should at least not crash. */
- strong = false;
- }
- }
- pd.strong = strong;
- if (pd.strong) {
- pd.phase_m1m1 = primegen_add_progress_phase(pgc, prog, pd.bitsm1m1);
- pd.phase_m1 = primegen_add_progress_phase(pgc, prog, pd.bitsm1);
- pd.phase_p1 = primegen_add_progress_phase(pgc, prog, pd.bitsp1);
- }
- pd.phase_main = primegen_add_progress_phase(pgc, prog, pd.bits);
- return pd;
- }
- static mp_int *generate_rsa_prime(
- RSAPrimeDetails pd, PrimeGenerationContext *pgc, ProgressReceiver *prog)
- {
- mp_int *m1m1 = NULL, *m1 = NULL, *p1 = NULL, *p = NULL;
- PrimeCandidateSource *pcs;
- if (pd.strong) {
- progress_start_phase(prog, pd.phase_m1m1);
- pcs = pcs_new_with_firstbits(pd.bitsm1m1, pd.firstbits, NFIRSTBITS);
- m1m1 = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- progress_start_phase(prog, pd.phase_m1);
- pcs = pcs_new_with_firstbits(pd.bitsm1, pd.firstbits, NFIRSTBITS);
- pcs_require_residue_1_mod_prime(pcs, m1m1);
- m1 = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- progress_start_phase(prog, pd.phase_p1);
- pcs = pcs_new_with_firstbits(pd.bitsp1, pd.firstbits, NFIRSTBITS);
- p1 = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- }
- progress_start_phase(prog, pd.phase_main);
- pcs = pcs_new_with_firstbits(pd.bits, pd.firstbits, NFIRSTBITS);
- pcs_avoid_residue_small(pcs, RSA_EXPONENT, 1);
- if (pd.strong) {
- pcs_require_residue_1_mod_prime(pcs, m1);
- mp_int *p1_minus_1 = mp_copy(p1);
- mp_sub_integer_into(p1_minus_1, p1, 1);
- pcs_require_residue(pcs, p1, p1_minus_1);
- mp_free(p1_minus_1);
- }
- p = primegen_generate(pgc, pcs, prog);
- progress_report_phase_complete(prog);
- if (m1m1)
- mp_free(m1m1);
- if (m1)
- mp_free(m1);
- if (p1)
- mp_free(p1);
- return p;
- }
- int rsa_generate(RSAKey *key, int bits, bool strong,
- PrimeGenerationContext *pgc, ProgressReceiver *prog)
- {
- key->sshk.vt = &ssh_rsa;
- /*
- * We don't generate e; we just use a standard one always.
- */
- mp_int *exponent = mp_from_integer(RSA_EXPONENT);
- /*
- * Generate p and q: primes with combined length `bits', not
- * congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
- * and e to be coprime, and (q-1) and e to be coprime, but in
- * general that's slightly more fiddly to arrange. By choosing
- * a prime e, we can simplify the criterion.)
- *
- * We give a min_separation of 2 to invent_firstbits(), ensuring
- * that the two primes won't be very close to each other. (The
- * chance of them being _dangerously_ close is negligible - even
- * more so than an attacker guessing a whole 256-bit session key -
- * but it doesn't cost much to make sure.)
- */
- int qbits = bits / 2;
- int pbits = bits - qbits;
- assert(pbits >= qbits);
- RSAPrimeDetails pd = setup_rsa_prime(pbits, strong, pgc, prog);
- RSAPrimeDetails qd = setup_rsa_prime(qbits, strong, pgc, prog);
- progress_ready(prog);
- invent_firstbits(&pd.firstbits, &qd.firstbits, 2);
- mp_int *p = generate_rsa_prime(pd, pgc, prog);
- mp_int *q = generate_rsa_prime(qd, pgc, prog);
- /*
- * Ensure p > q, by swapping them if not.
- *
- * We only need to do this if the two primes were generated with
- * the same number of bits (i.e. if the requested key size is
- * even) - otherwise it's already guaranteed!
- */
- if (pbits == qbits) {
- mp_cond_swap(p, q, mp_cmp_hs(q, p));
- } else {
- assert(mp_cmp_hs(p, q));
- }
- /*
- * Now we have p, q and e. All we need to do now is work out
- * the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
- * and (q^-1 mod p).
- */
- mp_int *modulus = mp_mul(p, q);
- mp_int *pm1 = mp_copy(p);
- mp_sub_integer_into(pm1, pm1, 1);
- mp_int *qm1 = mp_copy(q);
- mp_sub_integer_into(qm1, qm1, 1);
- mp_int *phi_n = mp_mul(pm1, qm1);
- mp_free(pm1);
- mp_free(qm1);
- mp_int *private_exponent = mp_invert(exponent, phi_n);
- mp_free(phi_n);
- mp_int *iqmp = mp_invert(q, p);
- /*
- * Populate the returned structure.
- */
- key->modulus = modulus;
- key->exponent = exponent;
- key->private_exponent = private_exponent;
- key->p = p;
- key->q = q;
- key->iqmp = iqmp;
- key->bits = mp_get_nbits(modulus);
- key->bytes = (key->bits + 7) / 8;
- return 1;
- }
- /*
- * Invent a pair of values suitable for use as the 'firstbits' values
- * for the two RSA primes, such that their product is at least 2, and
- * such that their difference is also at least min_separation.
- *
- * This is used for generating RSA keys which have exactly the
- * specified number of bits rather than one fewer - if you generate an
- * a-bit and a b-bit number completely at random and multiply them
- * together, you could end up with either an (ab-1)-bit number or an
- * (ab)-bit number. The former happens log(2)*2-1 of the time (about
- * 39%) and, though actually harmless, every time it occurs it has a
- * non-zero probability of sparking a user email along the lines of
- * 'Hey, I asked PuTTYgen for a 2048-bit key and I only got 2047 bits!
- * Bug!'
- */
- static inline unsigned firstbits_b_min(
- unsigned a, unsigned lo, unsigned hi, unsigned min_separation)
- {
- /* To get a large enough product, b must be at least this much */
- unsigned b_min = (2*lo*lo + a - 1) / a;
- /* Now enforce a<b, optionally with minimum separation */
- if (b_min < a + min_separation)
- b_min = a + min_separation;
- /* And cap at the upper limit */
- if (b_min > hi)
- b_min = hi;
- return b_min;
- }
- static void invent_firstbits(unsigned *one, unsigned *two,
- unsigned min_separation)
- {
- /*
- * We'll pick 12 initial bits (number selected at random) for each
- * prime, not counting the leading 1. So we want to return two
- * values in the range [2^12,2^13) whose product is at least 2^25.
- *
- * Strategy: count up all the viable pairs, then select a random
- * number in that range and use it to pick a pair.
- *
- * To keep things simple, we'll ensure a < b, and randomly swap
- * them at the end.
- */
- const unsigned lo = 1<<12, hi = 1<<13, minproduct = 2*lo*lo;
- unsigned a, b;
- /*
- * Count up the number of prefixes of b that would be valid for
- * each prefix of a.
- */
- mp_int *total = mp_new(32);
- for (a = lo; a < hi; a++) {
- unsigned b_min = firstbits_b_min(a, lo, hi, min_separation);
- mp_add_integer_into(total, total, hi - b_min);
- }
- /*
- * Make up a random number in the range [0,2*total).
- */
- mp_int *mlo = mp_from_integer(0), *mhi = mp_new(32);
- mp_lshift_fixed_into(mhi, total, 1);
- mp_int *randval = mp_random_in_range(mlo, mhi);
- mp_free(mlo);
- mp_free(mhi);
- /*
- * Use the low bit of randval as our swap indicator, leaving the
- * rest of it in the range [0,total).
- */
- unsigned swap = mp_get_bit(randval, 0);
- mp_rshift_fixed_into(randval, randval, 1);
- /*
- * Now do the same counting loop again to make the actual choice.
- */
- a = b = 0;
- for (unsigned a_candidate = lo; a_candidate < hi; a_candidate++) {
- unsigned b_min = firstbits_b_min(a_candidate, lo, hi, min_separation);
- unsigned limit = hi - b_min;
- unsigned b_candidate = b_min + mp_get_integer(randval);
- unsigned use_it = 1 ^ mp_hs_integer(randval, limit);
- a ^= (a ^ a_candidate) & -use_it;
- b ^= (b ^ b_candidate) & -use_it;
- mp_sub_integer_into(randval, randval, limit);
- }
- mp_free(randval);
- mp_free(total);
- /*
- * Check everything came out right.
- */
- assert(lo <= a);
- assert(a < hi);
- assert(lo <= b);
- assert(b < hi);
- assert(a * b >= minproduct);
- assert(b >= a + min_separation);
- /*
- * Last-minute optional swap of a and b.
- */
- unsigned diff = (a ^ b) & (-swap);
- a ^= diff;
- b ^= diff;
- *one = a;
- *two = b;
- }
|