123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763 |
- /*
- * Prime generation.
- */
- #include <assert.h>
- #include <math.h>
- #include "ssh.h"
- #include "mpint.h"
- #include "mpunsafe.h"
- #include "sshkeygen.h"
- /* ----------------------------------------------------------------------
- * Standard probabilistic prime-generation algorithm:
- *
- * - get a number from our PrimeCandidateSource which will at least
- * avoid being divisible by any prime under 2^16
- *
- * - perform the Miller-Rabin primality test enough times to
- * ensure the probability of it being composite is 2^-80 or
- * less
- *
- * - go back to square one if any M-R test fails.
- */
- static PrimeGenerationContext *probprime_new_context(
- const PrimeGenerationPolicy *policy)
- {
- PrimeGenerationContext *ctx = snew(PrimeGenerationContext);
- ctx->vt = policy;
- return ctx;
- }
- static void probprime_free_context(PrimeGenerationContext *ctx)
- {
- sfree(ctx);
- }
- static ProgressPhase probprime_add_progress_phase(
- const PrimeGenerationPolicy *policy,
- ProgressReceiver *prog, unsigned bits)
- {
- /*
- * The density of primes near x is 1/(log x). When x is about 2^b,
- * that's 1/(b log 2).
- *
- * But we're only doing the expensive part of the process (the M-R
- * checks) for a number that passes the initial winnowing test of
- * having no factor less than 2^16 (at least, unless the prime is
- * so small that PrimeCandidateSource gives up on that winnowing).
- * The density of _those_ numbers is about 1/19.76. So the odds of
- * hitting a prime per expensive attempt are boosted by a factor
- * of 19.76.
- */
- const double log_2 = 0.693147180559945309417232121458;
- double winnow_factor = (bits < 32 ? 1.0 : 19.76);
- double prob = winnow_factor / (bits * log_2);
- /*
- * Estimate the cost of prime generation as the cost of the M-R
- * modexps.
- */
- double cost = (miller_rabin_checks_needed(bits) *
- estimate_modexp_cost(bits));
- return progress_add_probabilistic(prog, cost, prob);
- }
- static mp_int *probprime_generate(
- PrimeGenerationContext *ctx,
- PrimeCandidateSource *pcs, ProgressReceiver *prog)
- {
- pcs_ready(pcs);
- while (true) {
- progress_report_attempt(prog);
- mp_int *p = pcs_generate(pcs);
- if (!p) {
- pcs_free(pcs);
- return NULL;
- }
- MillerRabin *mr = miller_rabin_new(p);
- bool known_bad = false;
- unsigned nchecks = miller_rabin_checks_needed(mp_get_nbits(p));
- for (unsigned check = 0; check < nchecks; check++) {
- if (!miller_rabin_test_random(mr)) {
- known_bad = true;
- break;
- }
- }
- miller_rabin_free(mr);
- if (!known_bad) {
- /*
- * We have a prime!
- */
- pcs_free(pcs);
- return p;
- }
- mp_free(p);
- }
- }
- static strbuf *null_mpu_certificate(PrimeGenerationContext *ctx, mp_int *p)
- {
- return NULL;
- }
- const PrimeGenerationPolicy primegen_probabilistic = {
- probprime_add_progress_phase,
- probprime_new_context,
- probprime_free_context,
- probprime_generate,
- null_mpu_certificate,
- };
- /* ----------------------------------------------------------------------
- * Alternative provable-prime algorithm, based on the following paper:
- *
- * [MAURER] Maurer, U.M. Fast generation of prime numbers and secure
- * public-key cryptographic parameters. J. Cryptology 8, 123–155
- * (1995). https://doi.org/10.1007/BF00202269
- */
- typedef enum SubprimePolicy {
- SPP_FAST,
- SPP_MAURER_SIMPLE,
- SPP_MAURER_COMPLEX,
- } SubprimePolicy;
- typedef struct ProvablePrimePolicyExtra {
- SubprimePolicy spp;
- } ProvablePrimePolicyExtra;
- typedef struct ProvablePrimeContext ProvablePrimeContext;
- struct ProvablePrimeContext {
- Pockle *pockle;
- PrimeGenerationContext pgc;
- const ProvablePrimePolicyExtra *extra;
- };
- static PrimeGenerationContext *provableprime_new_context(
- const PrimeGenerationPolicy *policy)
- {
- ProvablePrimeContext *ppc = snew(ProvablePrimeContext);
- ppc->pgc.vt = policy;
- ppc->pockle = pockle_new();
- ppc->extra = policy->extra;
- return &ppc->pgc;
- }
- static void provableprime_free_context(PrimeGenerationContext *ctx)
- {
- ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
- pockle_free(ppc->pockle);
- sfree(ppc);
- }
- static ProgressPhase provableprime_add_progress_phase(
- const PrimeGenerationPolicy *policy,
- ProgressReceiver *prog, unsigned bits)
- {
- /*
- * Estimating the cost of making a _provable_ prime is difficult
- * because of all the recursions to smaller sizes.
- *
- * Once you have enough factors of p-1 to certify primality of p,
- * the remaining work in provable prime generation is not very
- * different from probabilistic: you generate a random candidate,
- * test its primality probabilistically, and use the witness value
- * generated as a byproduct of that test for the full Pocklington
- * verification. The expensive part, as usual, is made of modpows.
- *
- * The Pocklington test needs at least two modpows (one for the
- * Fermat check, and one per known factor of p-1).
- *
- * The prior M-R step needs an unknown number, because we iterate
- * until we find a value whose order is divisible by the largest
- * power of 2 that divides p-1, say 2^j. That excludes half the
- * possible witness values (specifically, the quadratic residues),
- * so we expect to need on average two M-R operations to find one.
- * But that's only if the number _is_ prime - as usual, it's also
- * possible that we hit a non-prime and have to try again.
- *
- * So, if we were only estimating the cost of that final step, it
- * would look a lot like the probabilistic version: we'd have to
- * estimate the expected total number of modexps by knowing
- * something about the density of primes among our candidate
- * integers, and then multiply that by estimate_modexp_cost(bits).
- * But the problem is that we also have to _find_ a smaller prime,
- * so we have to recurse.
- *
- * In the MAURER_SIMPLE version of the algorithm, you recurse to
- * any one of a range of possible smaller sizes i, each with
- * probability proportional to 1/i. So your expected time to
- * generate an n-bit prime is given by a horrible recurrence of
- * the form E_n = S_n + (sum E_i/i) / (sum 1/i), in which S_n is
- * the expected cost of the final step once you have your smaller
- * primes, and both sums are over ceil(n/2) <= i <= n-20.
- *
- * At this point I ran out of effort to actually do the maths
- * rigorously, so instead I did the empirical experiment of
- * generating that sequence in Python and plotting it on a graph.
- * My Python code is here, in case I need it again:
- from math import log
- alpha = log(3)/log(2) + 1 # exponent for modexp using Karatsuba mult
- E = [1] * 16 # assume generating tiny primes is trivial
- for n in range(len(E), 4096):
- # Expected time for sub-generations, as a weighted mean of prior
- # values of the same sequence.
- lo = (n+1)//2
- hi = n-20
- if lo <= hi:
- subrange = range(lo, hi+1)
- num = sum(E[i]/i for i in subrange)
- den = sum(1/i for i in subrange)
- else:
- num, den = 0, 1
- # Constant term (cost of final step).
- # Similar to probprime_add_progress_phase.
- winnow_factor = 1 if n < 32 else 19.76
- prob = winnow_factor / (n * log(2))
- cost = 4 * n**alpha / prob
- E.append(cost + num / den)
- for i, p in enumerate(E):
- try:
- print(log(i), log(p))
- except ValueError:
- continue
- * The output loop prints the logs of both i and E_i, so that when
- * I plot the resulting data file in gnuplot I get a log-log
- * diagram. That showed me some early noise and then a very
- * straight-looking line; feeding the straight part of the graph
- * to linear-regression analysis reported that it fits the line
- *
- * log E_n = -1.7901825337965498 + 3.6199197179662517 * log(n)
- * => E_n = 0.16692969657466802 * n^3.6199197179662517
- *
- * So my somewhat empirical estimate is that Maurer prime
- * generation costs about 0.167 * bits^3.62, in the same arbitrary
- * time units used by estimate_modexp_cost.
- */
- return progress_add_linear(prog, 0.167 * pow(bits, 3.62));
- }
- static mp_int *primegen_small(Pockle *pockle, PrimeCandidateSource *pcs)
- {
- assert(pcs_get_bits(pcs) <= 32);
- pcs_ready(pcs);
- while (true) {
- mp_int *p = pcs_generate(pcs);
- if (!p) {
- pcs_free(pcs);
- return NULL;
- }
- if (pockle_add_small_prime(pockle, p) == POCKLE_OK) {
- pcs_free(pcs);
- return p;
- }
- mp_free(p);
- }
- }
- #ifdef DEBUG_PRIMEGEN
- static void timestamp(FILE *fp)
- {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- fprintf(fp, "%lu.%09lu: ", (unsigned long)ts.tv_sec,
- (unsigned long)ts.tv_nsec);
- }
- static PRINTF_LIKE(1, 2) void debug_f(const char *fmt, ...)
- {
- va_list ap;
- va_start(ap, fmt);
- timestamp(stderr);
- vfprintf(stderr, fmt, ap);
- fputc('\n', stderr);
- va_end(ap);
- }
- static void debug_f_mp(const char *fmt, mp_int *x, ...)
- {
- va_list ap;
- va_start(ap, x);
- timestamp(stderr);
- vfprintf(stderr, fmt, ap);
- mp_dump(stderr, "", x, "\n");
- va_end(ap);
- }
- #else
- #define debug_f(...) ((void)0)
- #define debug_f_mp(...) ((void)0)
- #endif
- static double uniform_random_double(void)
- {
- unsigned char randbuf[8];
- random_read(randbuf, 8);
- return GET_64BIT_MSB_FIRST(randbuf) * 0x1.0p-64;
- }
- static mp_int *mp_ceil_div(mp_int *n, mp_int *d)
- {
- mp_int *nplus = mp_add(n, d);
- mp_sub_integer_into(nplus, nplus, 1);
- mp_int *toret = mp_div(nplus, d);
- mp_free(nplus);
- return toret;
- }
- static mp_int *provableprime_generate_inner(
- ProvablePrimeContext *ppc, PrimeCandidateSource *pcs,
- ProgressReceiver *prog, double progress_origin, double progress_scale)
- {
- unsigned bits = pcs_get_bits(pcs);
- assert(bits > 1);
- if (bits <= 32) {
- debug_f("ppgi(%u) -> small", bits);
- return primegen_small(ppc->pockle, pcs);
- }
- unsigned min_bits_needed, max_bits_needed;
- {
- /*
- * Find the product of all the prime factors we already know
- * about.
- */
- mp_int *size_got = mp_from_integer(1);
- size_t nfactors;
- mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
- for (size_t i = 0; i < nfactors; i++) {
- mp_int *to_free = size_got;
- size_got = mp_unsafe_shrink(mp_mul(size_got, factors[i]));
- mp_free(to_free);
- }
- /*
- * Find the largest cofactor we might be able to use, and the
- * smallest one we can get away with.
- */
- mp_int *upperbound = pcs_get_upper_bound(pcs);
- mp_int *size_needed = mp_nthroot(upperbound, 3, NULL);
- debug_f_mp("upperbound = ", upperbound);
- {
- mp_int *to_free = upperbound;
- upperbound = mp_unsafe_shrink(mp_div(upperbound, size_got));
- mp_free(to_free);
- }
- debug_f_mp("size_needed = ", size_needed);
- {
- mp_int *to_free = size_needed;
- size_needed = mp_unsafe_shrink(mp_ceil_div(size_needed, size_got));
- mp_free(to_free);
- }
- max_bits_needed = pcs_get_bits_remaining(pcs);
- /*
- * We need a prime that is greater than or equal to
- * 'size_needed' in order for the product of all our known
- * factors of p-1 to exceed the cube root of the largest value
- * p might take.
- *
- * Since pcs_new wants a size specified in bits, we must count
- * the bits in size_needed and then add 1. Otherwise we might
- * get a value with the same bit count as size_needed but
- * slightly smaller than it.
- *
- * An exception is if size_needed = 1. In that case the
- * product of existing known factors is _already_ enough, so
- * we don't need to generate an extra factor at all.
- */
- if (mp_hs_integer(size_needed, 2)) {
- min_bits_needed = mp_get_nbits(size_needed) + 1;
- } else {
- min_bits_needed = 0;
- }
- mp_free(upperbound);
- mp_free(size_needed);
- mp_free(size_got);
- }
- double progress = 0.0;
- if (min_bits_needed) {
- debug_f("ppgi(%u) recursing, need [%u,%u] more bits",
- bits, min_bits_needed, max_bits_needed);
- unsigned *sizes = NULL;
- size_t nsizes = 0, sizesize = 0;
- unsigned real_min = max_bits_needed / 2;
- unsigned real_max = (max_bits_needed >= 20 ?
- max_bits_needed - 20 : 0);
- if (real_min < min_bits_needed)
- real_min = min_bits_needed;
- if (real_max < real_min)
- real_max = real_min;
- debug_f("ppgi(%u) revised bits interval = [%u,%u]",
- bits, real_min, real_max);
- switch (ppc->extra->spp) {
- case SPP_FAST:
- /*
- * Always pick the smallest subsidiary prime we can get
- * away with: just over n/3 bits.
- *
- * This is not a good mode for cryptographic prime
- * generation, because it skews the distribution of primes
- * greatly, and worse, it skews them in a direction that
- * heads away from the properties crypto algorithms tend
- * to like.
- *
- * (For both discrete-log systems and RSA, people have
- * tended to recommend in the past that p-1 should have a
- * _large_ factor if possible. There's some disagreement
- * on which algorithms this is really necessary for, but
- * certainly I've never seen anyone recommend arranging a
- * _small_ factor on purpose.)
- *
- * I originally implemented this mode because it was
- * convenient for debugging - it wastes as little time as
- * possible on finding a sub-prime and lets you get to the
- * interesting part! And I leave it in the code because it
- * might still be useful for _something_. Because it's
- * cryptographically questionable, it's not selectable in
- * the UI of either version of PuTTYgen proper; but it can
- * be accessed through testcrypt, and if for some reason a
- * definite prime is needed for non-crypto purposes, it
- * may still be the fastest way to put your hands on one.
- */
- debug_f("ppgi(%u) fast mode, just ask for %u bits",
- bits, min_bits_needed);
- sgrowarray(sizes, sizesize, nsizes);
- sizes[nsizes++] = min_bits_needed;
- break;
- case SPP_MAURER_SIMPLE: {
- /*
- * Select the size of the subsidiary prime at random from
- * sqrt(outputprime) up to outputprime/2^20, in such a way
- * that the probability distribution matches that of the
- * largest prime factor of a random n-bit number.
- *
- * Per [MAURER] section 3.4, the cumulative distribution
- * function of this relative size is 1+log2(x), for x in
- * [1/2,1]. You can generate a value from the distribution
- * given by a cdf by applying the inverse cdf to a uniform
- * value in [0,1]. Simplifying that in this case, what we
- * have to do is raise 2 to the power of a random real
- * number between -1 and 0. (And that gives you the number
- * of _bits_ in the sub-prime, as a factor of the desired
- * output number of bits.)
- *
- * We also require that the subsidiary prime q is at least
- * 20 bits smaller than the output one, to give us a
- * fighting chance of there being _any_ prime we can find
- * such that q | p-1.
- *
- * (But these rules have to be applied in an order that
- * still leaves us _some_ interval of possible sizes we
- * can pick!)
- */
- maurer_simple:
- debug_f("ppgi(%u) Maurer simple mode", bits);
- unsigned sub_bits;
- do {
- double uniform = uniform_random_double();
- sub_bits = real_max * pow(2.0, uniform - 1) + 0.5;
- debug_f(" ... %.6f -> %u?", uniform, sub_bits);
- } while (!(real_min <= sub_bits && sub_bits <= real_max));
- debug_f("ppgi(%u) asking for %u bits", bits, sub_bits);
- sgrowarray(sizes, sizesize, nsizes);
- sizes[nsizes++] = sub_bits;
- break;
- }
- case SPP_MAURER_COMPLEX: {
- /*
- * In this mode, we may generate multiple factors of p-1
- * which between them add up to at least n/2 bits, in such
- * a way that those are guaranteed to be the largest
- * factors of p-1 and that they have the same probability
- * distribution as the largest k factors would have in a
- * random integer. The idea is that this more elaborate
- * procedure gets as close as possible to the same
- * probability distribution you'd get by selecting a
- * completely random prime (if you feasibly could).
- *
- * Algorithm from Appendix 1 of [MAURER]: we generate
- * random real numbers that sum to at most 1, by choosing
- * each one uniformly from the range [0, 1 - sum of all
- * the previous ones]. We maintain them in a list in
- * decreasing order, and we stop as soon as we find an
- * initial subsequence of the list s_1,...,s_r such that
- * s_1 + ... + s_{r-1} + 2 s_r > 1. In particular, this
- * guarantees that the sum of that initial subsequence is
- * at least 1/2, so we end up with enough factors to
- * satisfy Pocklington.
- */
- if (max_bits_needed / 2 + 1 > real_max) {
- /* Early exit path in the case where this algorithm
- * can't possibly generate a value in the range we
- * need. In that situation, fall back to Maurer
- * simple. */
- debug_f("ppgi(%u) skipping GenerateSizeList, "
- "real_max too small", bits);
- goto maurer_simple; /* sorry! */
- }
- double *s = NULL;
- size_t ns, ssize = 0;
- while (true) {
- debug_f("ppgi(%u) starting GenerateSizeList", bits);
- ns = 0;
- double range = 1.0;
- while (true) {
- /* Generate the next number */
- double u = uniform_random_double() * range;
- range -= u;
- debug_f(" u_%"SIZEu" = %g", ns, u);
- /* Insert it in the list */
- sgrowarray(s, ssize, ns);
- size_t i;
- for (i = ns; i > 0 && s[i-1] < u; i--)
- s[i] = s[i-1];
- s[i] = u;
- ns++;
- debug_f(" inserting as s[%"SIZEu"]", i);
- /* Look for a suitable initial subsequence */
- double sum = 0;
- for (i = 0; i < ns; i++) {
- sum += s[i];
- if (sum + s[i] > 1.0) {
- debug_f(" s[0..%"SIZEu"] works!", i);
- /* Truncate the sequence here, and stop
- * generating random real numbers. */
- ns = i+1;
- goto got_list;
- }
- }
- }
- got_list:;
- /*
- * Now translate those real numbers into actual bit
- * counts, and do a last-minute check to make sure
- * their product is going to be in range.
- *
- * We have to check both the min and max sizes of the
- * total. A b-bit number is in [2^{b-1},2^b). So the
- * product of numbers of sizes b_1,...,b_k is at least
- * 2^{\sum (b_i-1)}, and less than 2^{\sum b_i}.
- */
- nsizes = 0;
- unsigned min_total = 0, max_total = 0;
- for (size_t i = 0; i < ns; i++) {
- /* These sizes are measured in actual entropy, so
- * add 1 bit each time to account for the
- * zero-information leading 1 */
- unsigned this_size = max_bits_needed * s[i] + 1;
- debug_f(" bits[%"SIZEu"] = %u", i, this_size);
- sgrowarray(sizes, sizesize, nsizes);
- sizes[nsizes++] = this_size;
- min_total += this_size - 1;
- max_total += this_size;
- }
- debug_f(" total bits = [%u,%u)", min_total, max_total);
- if (min_total < real_min || max_total > real_max+1) {
- debug_f(" total out of range, try again");
- } else {
- debug_f(" success! %"SIZEu" sub-primes totalling [%u,%u) "
- "bits", nsizes, min_total, max_total);
- break;
- }
- }
- smemclr(s, ssize * sizeof(*s));
- sfree(s);
- break;
- }
- default:
- unreachable("bad subprime policy");
- }
- for (size_t i = 0; i < nsizes; i++) {
- unsigned sub_bits = sizes[i];
- double progress_in_this_prime = (double)sub_bits / bits;
- mp_int *q = provableprime_generate_inner(
- ppc, pcs_new(sub_bits),
- prog, progress_origin + progress_scale * progress,
- progress_scale * progress_in_this_prime);
- progress += progress_in_this_prime;
- assert(q);
- debug_f_mp("ppgi(%u) got factor ", q, bits);
- pcs_require_residue_1_mod_prime(pcs, q);
- mp_free(q);
- }
- smemclr(sizes, sizesize * sizeof(*sizes));
- sfree(sizes);
- } else {
- debug_f("ppgi(%u) no need to recurse", bits);
- }
- debug_f("ppgi(%u) ready, %u bits remaining",
- bits, pcs_get_bits_remaining(pcs));
- pcs_ready(pcs);
- while (true) {
- mp_int *p = pcs_generate(pcs);
- if (!p) {
- pcs_free(pcs);
- return NULL;
- }
- debug_f_mp("provable_step p=", p);
- MillerRabin *mr = miller_rabin_new(p);
- debug_f("provable_step mr setup done");
- mp_int *witness = miller_rabin_find_potential_primitive_root(mr);
- miller_rabin_free(mr);
- if (!witness) {
- debug_f("provable_step mr failed");
- mp_free(p);
- continue;
- }
- size_t nfactors;
- mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
- PockleStatus st = pockle_add_prime(
- ppc->pockle, p, factors, nfactors, witness);
- if (st != POCKLE_OK) {
- debug_f("provable_step proof failed %d", (int)st);
- /*
- * Check by assertion that the error status is not one of
- * the ones we ought to have ruled out already by
- * construction. If there's a bug in this code that means
- * we can _never_ pass this test (e.g. picking products of
- * factors that never quite reach cbrt(n)), we'd rather
- * fail an assertion than loop forever.
- */
- assert(st == POCKLE_DISCRIMINANT_IS_SQUARE ||
- st == POCKLE_WITNESS_POWER_IS_1 ||
- st == POCKLE_WITNESS_POWER_NOT_COPRIME);
- mp_free(p);
- if (witness)
- mp_free(witness);
- continue;
- }
- mp_free(witness);
- pcs_free(pcs);
- debug_f_mp("ppgi(%u) done, got ", p, bits);
- progress_report(prog, progress_origin + progress_scale);
- return p;
- }
- }
- static mp_int *provableprime_generate(
- PrimeGenerationContext *ctx,
- PrimeCandidateSource *pcs, ProgressReceiver *prog)
- {
- ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
- mp_int *p = provableprime_generate_inner(ppc, pcs, prog, 0.0, 1.0);
- return p;
- }
- static inline strbuf *provableprime_mpu_certificate(
- PrimeGenerationContext *ctx, mp_int *p)
- {
- ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
- return pockle_mpu(ppc->pockle, p);
- }
- #define DECLARE_POLICY(name, policy) \
- static const struct ProvablePrimePolicyExtra \
- pppextra_##name = {policy}; \
- const PrimeGenerationPolicy name = { \
- provableprime_add_progress_phase, \
- provableprime_new_context, \
- provableprime_free_context, \
- provableprime_generate, \
- provableprime_mpu_certificate, \
- &pppextra_##name, \
- }
- DECLARE_POLICY(primegen_provable_fast, SPP_FAST);
- DECLARE_POLICY(primegen_provable_maurer_simple, SPP_MAURER_SIMPLE);
- DECLARE_POLICY(primegen_provable_maurer_complex, SPP_MAURER_COMPLEX);
- /* ----------------------------------------------------------------------
- * Reusable null implementation of the progress-reporting API.
- */
- static inline ProgressPhase null_progress_add(void) {
- ProgressPhase ph = { .n = 0 };
- return ph;
- }
- ProgressPhase null_progress_add_linear(
- ProgressReceiver *prog, double c) { return null_progress_add(); }
- ProgressPhase null_progress_add_probabilistic(
- ProgressReceiver *prog, double c, double p) { return null_progress_add(); }
- void null_progress_ready(ProgressReceiver *prog) {}
- void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase) {}
- void null_progress_report(ProgressReceiver *prog, double progress) {}
- void null_progress_report_attempt(ProgressReceiver *prog) {}
- void null_progress_report_phase_complete(ProgressReceiver *prog) {}
- const ProgressReceiverVtable null_progress_vt = {
- .add_linear = null_progress_add_linear,
- .add_probabilistic = null_progress_add_probabilistic,
- .ready = null_progress_ready,
- .start_phase = null_progress_start_phase,
- .report = null_progress_report,
- .report_attempt = null_progress_report_attempt,
- .report_phase_complete = null_progress_report_phase_complete,
- };
- /* ----------------------------------------------------------------------
- * Helper function for progress estimation.
- */
- double estimate_modexp_cost(unsigned bits)
- {
- /*
- * A modexp of n bits goes roughly like O(n^2.58), on the grounds
- * that our modmul is O(n^1.58) (Karatsuba) and you need O(n) of
- * them in a modexp.
- */
- return pow(bits, 2.58);
- }
|