123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- #include <assert.h>
- #include "ssh.h"
- #include "sshkeygen.h"
- #include "mpint.h"
- #include "mpunsafe.h"
- #include "tree234.h"
- typedef struct PocklePrimeRecord PocklePrimeRecord;
- struct Pockle {
- tree234 *tree;
- PocklePrimeRecord **list;
- size_t nlist, listsize;
- };
- struct PocklePrimeRecord {
- mp_int *prime;
- PocklePrimeRecord **factors;
- size_t nfactors;
- mp_int *witness;
- size_t index; /* index in pockle->list */
- };
- static int ppr_cmp(void *av, void *bv)
- {
- PocklePrimeRecord *a = (PocklePrimeRecord *)av;
- PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
- return mp_cmp_hs(a->prime, b->prime) - mp_cmp_hs(b->prime, a->prime);
- }
- static int ppr_find(void *av, void *bv)
- {
- mp_int *a = (mp_int *)av;
- PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
- return mp_cmp_hs(a, b->prime) - mp_cmp_hs(b->prime, a);
- }
- Pockle *pockle_new(void)
- {
- Pockle *pockle = snew(Pockle);
- pockle->tree = newtree234(ppr_cmp);
- pockle->list = NULL;
- pockle->nlist = pockle->listsize = 0;
- return pockle;
- }
- void pockle_free(Pockle *pockle)
- {
- pockle_release(pockle, 0);
- assert(count234(pockle->tree) == 0);
- freetree234(pockle->tree);
- sfree(pockle->list);
- sfree(pockle);
- }
- static PockleStatus pockle_insert(Pockle *pockle, mp_int *p, mp_int **factors,
- size_t nfactors, mp_int *w)
- {
- PocklePrimeRecord *pr = snew(PocklePrimeRecord);
- pr->prime = mp_copy(p);
- PocklePrimeRecord *found = add234(pockle->tree, pr);
- if (pr != found) {
- /* it was already in there */
- mp_free(pr->prime);
- sfree(pr);
- return POCKLE_OK;
- }
- if (w) {
- pr->factors = snewn(nfactors, PocklePrimeRecord *);
- for (size_t i = 0; i < nfactors; i++) {
- pr->factors[i] = find234(pockle->tree, factors[i], ppr_find);
- assert(pr->factors[i]);
- }
- pr->nfactors = nfactors;
- pr->witness = mp_copy(w);
- } else {
- pr->factors = NULL;
- pr->nfactors = 0;
- pr->witness = NULL;
- }
- pr->index = pockle->nlist;
- sgrowarray(pockle->list, pockle->listsize, pockle->nlist);
- pockle->list[pockle->nlist++] = pr;
- return POCKLE_OK;
- }
- size_t pockle_mark(Pockle *pockle)
- {
- return pockle->nlist;
- }
- void pockle_release(Pockle *pockle, size_t mark)
- {
- while (pockle->nlist > mark) {
- PocklePrimeRecord *pr = pockle->list[--pockle->nlist];
- del234(pockle->tree, pr);
- mp_free(pr->prime);
- if (pr->witness)
- mp_free(pr->witness);
- sfree(pr->factors);
- sfree(pr);
- }
- }
- PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p)
- {
- if (mp_hs_integer(p, (1ULL << 32)))
- return POCKLE_SMALL_PRIME_NOT_SMALL;
- uint32_t val = mp_get_integer(p);
- if (val < 2)
- return POCKLE_PRIME_SMALLER_THAN_2;
- init_smallprimes();
- for (size_t i = 0; i < NSMALLPRIMES; i++) {
- if (val == smallprimes[i])
- break; /* success */
- if (val % smallprimes[i] == 0)
- return POCKLE_SMALL_PRIME_NOT_PRIME;
- }
- return pockle_insert(pockle, p, NULL, 0, NULL);
- }
- PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p,
- mp_int **factors, size_t nfactors,
- mp_int *witness)
- {
- MontyContext *mc = NULL;
- mp_int *x = NULL, *f = NULL, *w = NULL;
- PockleStatus status;
- /*
- * We're going to try to verify that p is prime by using
- * Pocklington's theorem. The idea is that we're given w such that
- * w^{p-1} == 1 (mod p) (1)
- * and for a collection of primes q | p-1,
- * w^{(p-1)/q} - 1 is coprime to p. (2)
- *
- * Suppose r is a prime factor of p itself. Consider the
- * multiplicative order of w mod r. By (1), r | w^{p-1}-1. But by
- * (2), r does not divide w^{(p-1)/q}-1. So the order of w mod r
- * is a factor of p-1, but not a factor of (p-1)/q. Hence, the
- * largest power of q that divides p-1 must also divide ord w.
- *
- * Repeating this reasoning for all q, we find that the product of
- * all the q (which we'll denote f) must divide ord w, which in
- * turn divides r-1. So f | r-1 for any r | p.
- *
- * In particular, this means f < r. That is, all primes r | p are
- * bigger than f. So if f > sqrt(p), then we've shown p is prime,
- * because otherwise it would have to be the product of at least
- * two factors bigger than its own square root.
- *
- * With an extra check, we can also show p to be prime even if
- * we're only given enough factors to make f > cbrt(p). See below
- * for that part, when we come to it.
- */
- /*
- * Start by checking p > 1. It certainly can't be prime otherwise!
- * (And since we're going to prove it prime by showing all its
- * prime factors are large, we do also have to know it _has_ at
- * least one prime factor for that to tell us anything.)
- */
- if (!mp_hs_integer(p, 2))
- return POCKLE_PRIME_SMALLER_THAN_2;
- /*
- * Check that all the factors we've been given really are primes
- * (in the sense that we already had them in our index). Make the
- * product f, and check it really does divide p-1.
- */
- x = mp_copy(p);
- mp_sub_integer_into(x, x, 1);
- f = mp_from_integer(1);
- for (size_t i = 0; i < nfactors; i++) {
- mp_int *q = factors[i];
- if (!find234(pockle->tree, q, ppr_find)) {
- status = POCKLE_FACTOR_NOT_KNOWN_PRIME;
- goto out;
- }
- mp_int *quotient = mp_new(mp_max_bits(x));
- mp_int *residue = mp_new(mp_max_bits(q));
- mp_divmod_into(x, q, quotient, residue);
- unsigned exact = mp_eq_integer(residue, 0);
- mp_free(residue);
- mp_free(x);
- x = quotient;
- if (!exact) {
- status = POCKLE_FACTOR_NOT_A_FACTOR;
- goto out;
- }
- mp_int *tmp = f;
- f = mp_unsafe_shrink(mp_mul(tmp, q));
- mp_free(tmp);
- }
- /*
- * Check that f > cbrt(p).
- */
- mp_int *f2 = mp_mul(f, f);
- mp_int *f3 = mp_mul(f2, f);
- bool too_big = mp_cmp_hs(p, f3);
- mp_free(f3);
- mp_free(f2);
- if (too_big) {
- status = POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL;
- goto out;
- }
- /*
- * Now do the extra check that allows us to get away with only
- * having f > cbrt(p) instead of f > sqrt(p).
- *
- * If we can show that f | r-1 for any r | p, then we've ruled out
- * p being a product of _more_ than two primes (because then it
- * would be the product of at least three things bigger than its
- * own cube root). But we still have to rule out it being a
- * product of exactly two.
- *
- * Suppose for the sake of contradiction that p is the product of
- * two prime factors. We know both of those factors would have to
- * be congruent to 1 mod f. So we'd have to have
- *
- * p = (uf+1)(vf+1) = (uv)f^2 + (u+v)f + 1 (3)
- *
- * We can't have uv >= f, or else that expression would come to at
- * least f^3, i.e. it would exceed p. So uv < f. Hence, u,v < f as
- * well.
- *
- * Can we have u+v >= f? If we did, then we could write v >= f-u,
- * and hence f > uv >= u(f-u). That can be rearranged to show that
- * u^2 > (u-1)f; decrementing the LHS makes the inequality no
- * longer necessarily strict, so we have u^2-1 >= (u-1)f, and
- * dividing off u-1 gives u+1 >= f. But we know u < f, so the only
- * way this could happen would be if u=f-1, which makes v=1. But
- * _then_ (3) gives us p = (f-1)f^2 + f^2 + 1 = f^3+1. But that
- * can't be true if f^3 > p. So we can't have u+v >= f either, by
- * contradiction.
- *
- * After all that, what have we shown? We've shown that we can
- * write p = (uv)f^2 + (u+v)f + 1, with both uv and u+v strictly
- * less than f. In other words, if you write down p in base f, it
- * has exactly three digits, and they are uv, u+v and 1.
- *
- * But that means we can _find_ u and v: we know p and f, so we
- * can just extract those digits of p's base-f representation.
- * Once we've done so, they give the sum and product of the
- * potential u,v. And given the sum and product of two numbers,
- * you can make a quadratic which has those numbers as roots.
- *
- * We don't actually have to _solve_ the quadratic: all we have to
- * do is check if its discriminant is a perfect square. If not,
- * we'll know that no integers u,v can match this description.
- */
- {
- /* We already have x = (p-1)/f. So we just need to write x in
- * the form aF + b, and then we have a=uv and b=u+v. */
- mp_int *a = mp_new(mp_max_bits(x));
- mp_int *b = mp_new(mp_max_bits(f));
- mp_divmod_into(x, f, a, b);
- assert(!mp_cmp_hs(a, f));
- assert(!mp_cmp_hs(b, f));
- /* If a=0, then that means p < f^2, so we don't need to do
- * this check at all: the straightforward Pocklington theorem
- * is all we need. */
- if (!mp_eq_integer(a, 0)) {
- unsigned perfect_square = 0;
- mp_int *bsq = mp_mul(b, b);
- mp_lshift_fixed_into(a, a, 2);
- if (mp_cmp_hs(bsq, a)) {
- /* b^2-4a is non-negative, so it might be a square.
- * Check it. */
- mp_int *discriminant = mp_sub(bsq, a);
- mp_int *remainder = mp_new(mp_max_bits(discriminant));
- mp_int *root = mp_nthroot(discriminant, 2, remainder);
- perfect_square = mp_eq_integer(remainder, 0);
- mp_free(discriminant);
- mp_free(root);
- mp_free(remainder);
- }
- mp_free(bsq);
- if (perfect_square) {
- mp_free(b);
- mp_free(a);
- status = POCKLE_DISCRIMINANT_IS_SQUARE;
- goto out;
- }
- }
- mp_free(b);
- mp_free(a);
- }
- /*
- * Now we've done all the checks that are cheaper than a modpow,
- * so we've ruled out as many things as possible before having to
- * do any hard work. But there's nothing for it now: make a
- * MontyContext.
- */
- mc = monty_new(p);
- w = monty_import(mc, witness);
- /*
- * The initial Fermat check: is w^{p-1} itself congruent to 1 mod
- * p?
- */
- {
- mp_int *pm1 = mp_copy(p);
- mp_sub_integer_into(pm1, pm1, 1);
- mp_int *power = monty_pow(mc, w, pm1);
- unsigned fermat_pass = mp_cmp_eq(power, monty_identity(mc));
- mp_free(power);
- mp_free(pm1);
- if (!fermat_pass) {
- status = POCKLE_FERMAT_TEST_FAILED;
- goto out;
- }
- }
- /*
- * And now, for each factor q, is w^{(p-1)/q}-1 coprime to p?
- */
- for (size_t i = 0; i < nfactors; i++) {
- mp_int *q = factors[i];
- mp_int *exponent = mp_unsafe_shrink(mp_div(p, q));
- mp_int *power = monty_pow(mc, w, exponent);
- mp_int *power_extracted = monty_export(mc, power);
- mp_sub_integer_into(power_extracted, power_extracted, 1);
- unsigned coprime = mp_coprime(power_extracted, p);
- if (!coprime) {
- /*
- * If w^{(p-1)/q}-1 is not coprime to p, the test has
- * failed. But it makes a difference why. If the power of
- * w turned out to be 1, so that we took gcd(1-1,p) =
- * gcd(0,p) = p, that's like an inconclusive Fermat or M-R
- * test: it might just mean you picked a witness integer
- * that wasn't a primitive root. But if the power is any
- * _other_ value mod p that is not coprime to p, it means
- * we've detected that the number is *actually not prime*!
- */
- if (mp_eq_integer(power_extracted, 0))
- status = POCKLE_WITNESS_POWER_IS_1;
- else
- status = POCKLE_WITNESS_POWER_NOT_COPRIME;
- }
- mp_free(exponent);
- mp_free(power);
- mp_free(power_extracted);
- if (!coprime)
- goto out; /* with the status we set up above */
- }
- /*
- * Success! p is prime. Insert it into our tree234 of known
- * primes, so that future calls to this function can cite it in
- * evidence of larger numbers' primality.
- */
- status = pockle_insert(pockle, p, factors, nfactors, witness);
- out:
- if (x)
- mp_free(x);
- if (f)
- mp_free(f);
- if (w)
- mp_free(w);
- if (mc)
- monty_free(mc);
- return status;
- }
- static void mp_write_decimal(strbuf *sb, mp_int *x)
- {
- char *s = mp_get_decimal(x);
- ptrlen pl = ptrlen_from_asciz(s);
- put_datapl(sb, pl);
- smemclr(s, pl.len);
- sfree(s);
- }
- strbuf *pockle_mpu(Pockle *pockle, mp_int *p)
- {
- strbuf *sb = strbuf_new_nm();
- PocklePrimeRecord *pr = find234(pockle->tree, p, ppr_find);
- assert(pr);
- bool *needed = snewn(pockle->nlist, bool);
- memset(needed, 0, pockle->nlist * sizeof(bool));
- needed[pr->index] = true;
- put_fmt(sb, "[MPU - Primality Certificate]\nVersion 1.0\nBase 10\n\n"
- "Proof for:\nN ");
- mp_write_decimal(sb, p);
- put_fmt(sb, "\n");
- for (size_t index = pockle->nlist; index-- > 0 ;) {
- if (!needed[index])
- continue;
- pr = pockle->list[index];
- if (mp_get_nbits(pr->prime) <= 64) {
- put_fmt(sb, "\nType Small\nN ");
- mp_write_decimal(sb, pr->prime);
- put_fmt(sb, "\n");
- } else {
- assert(pr->witness);
- put_fmt(sb, "\nType BLS5\nN ");
- mp_write_decimal(sb, pr->prime);
- put_fmt(sb, "\n");
- for (size_t i = 0; i < pr->nfactors; i++) {
- put_fmt(sb, "Q[%"SIZEu"] ", i+1);
- mp_write_decimal(sb, pr->factors[i]->prime);
- assert(pr->factors[i]->index < index);
- needed[pr->factors[i]->index] = true;
- put_fmt(sb, "\n");
- }
- for (size_t i = 0; i < pr->nfactors + 1; i++) {
- put_fmt(sb, "A[%"SIZEu"] ", i);
- mp_write_decimal(sb, pr->witness);
- put_fmt(sb, "\n");
- }
- put_fmt(sb, "----\n");
- }
- }
- sfree(needed);
- return sb;
- }
|