123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188 |
- /*
- * RSA implementation for PuTTY.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include "ssh.h"
- #include "mpint.h"
- #include "misc.h"
- void BinarySource_get_rsa_ssh1_pub(
- BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
- {
- unsigned bits;
- mp_int *e, *m;
- bits = get_uint32(src);
- if (order == RSA_SSH1_EXPONENT_FIRST) {
- e = get_mp_ssh1(src);
- m = get_mp_ssh1(src);
- } else {
- m = get_mp_ssh1(src);
- e = get_mp_ssh1(src);
- }
- if (rsa) {
- rsa->bits = bits;
- rsa->exponent = e;
- rsa->modulus = m;
- rsa->bytes = (mp_get_nbits(m) + 7) / 8;
- } else {
- mp_free(e);
- mp_free(m);
- }
- }
- void BinarySource_get_rsa_ssh1_priv(
- BinarySource *src, RSAKey *rsa)
- {
- rsa->private_exponent = get_mp_ssh1(src);
- }
- key_components *rsa_components(RSAKey *rsa)
- {
- key_components *kc = key_components_new();
- key_components_add_text(kc, "key_type", "RSA");
- key_components_add_mp(kc, "public_modulus", rsa->modulus);
- key_components_add_mp(kc, "public_exponent", rsa->exponent);
- if (rsa->private_exponent) {
- key_components_add_mp(kc, "private_exponent", rsa->private_exponent);
- key_components_add_mp(kc, "private_p", rsa->p);
- key_components_add_mp(kc, "private_q", rsa->q);
- key_components_add_mp(kc, "private_inverse_q_mod_p", rsa->iqmp);
- }
- return kc;
- }
- RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src)
- {
- RSAKey *rsa = snew(RSAKey);
- memset(rsa, 0, sizeof(RSAKey));
- get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST);
- get_rsa_ssh1_priv(src, rsa);
- /* SSH-1 names p and q the other way round, i.e. we have the
- * inverse of p mod q and not of q mod p. We swap the names,
- * because our internal RSA wants iqmp. */
- rsa->iqmp = get_mp_ssh1(src);
- rsa->q = get_mp_ssh1(src);
- rsa->p = get_mp_ssh1(src);
- return rsa;
- }
- void duprsakey(RSAKey *dst, const RSAKey *src)
- {
- dst->bits = src->bits;
- dst->bytes = src->bytes;
- dst->modulus = mp_copy(src->modulus);
- dst->exponent = mp_copy(src->exponent);
- dst->private_exponent = src->private_exponent ?
- mp_copy(src->private_exponent) : NULL;
- dst->p = mp_copy(src->p);
- dst->q = mp_copy(src->q);
- dst->iqmp = mp_copy(src->iqmp);
- dst->comment = src->comment ? dupstr(src->comment) : NULL;
- dst->sshk.vt = src->sshk.vt;
- }
- bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
- {
- mp_int *b1, *b2;
- int i;
- unsigned char *p;
- if (key->bytes < length + 4)
- return false; /* RSA key too short! */
- memmove(data + key->bytes - length, data, length);
- data[0] = 0;
- data[1] = 2;
- size_t npad = key->bytes - length - 3;
- /*
- * Generate a sequence of nonzero padding bytes. We do this in a
- * reasonably uniform way and without having to loop round
- * retrying the random number generation, by first generating an
- * integer in [0,2^n) for an appropriately large n; then we
- * repeatedly multiply by 255 to give an integer in [0,255*2^n),
- * extract the top 8 bits to give an integer in [0,255), and mask
- * those bits off before multiplying up again for the next digit.
- * This gives us a sequence of numbers in [0,255), and of course
- * adding 1 to each of them gives numbers in [1,256) as we wanted.
- *
- * (You could imagine this being a sort of fixed-point operation:
- * given a uniformly random binary _fraction_, multiplying it by k
- * and subtracting off the integer part will yield you a sequence
- * of integers each in [0,k). I'm just doing that scaled up by a
- * power of 2 to avoid the fractions.)
- */
- size_t random_bits = (npad + 16) * 8;
- mp_int *randval = mp_new(random_bits + 8);
- mp_int *tmp = mp_random_bits(random_bits);
- mp_copy_into(randval, tmp);
- mp_free(tmp);
- for (i = 2; i < key->bytes - length - 1; i++) {
- mp_mul_integer_into(randval, randval, 255);
- uint8_t byte = mp_get_byte(randval, random_bits / 8);
- assert(byte != 255);
- data[i] = byte + 1;
- mp_reduce_mod_2to(randval, random_bits);
- }
- mp_free(randval);
- data[key->bytes - length - 1] = 0;
- b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
- b2 = mp_modpow(b1, key->exponent, key->modulus);
- p = data;
- for (i = key->bytes; i--;) {
- *p++ = mp_get_byte(b2, i);
- }
- mp_free(b1);
- mp_free(b2);
- return true;
- }
- /*
- * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
- * distinct primes, and iqmp is the multiplicative inverse of q mod p.
- * Uses Chinese Remainder Theorem to speed computation up over the
- * obvious implementation of a single big modpow.
- */
- static mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
- mp_int *p, mp_int *q, mp_int *iqmp)
- {
- mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
- mp_int *diff, *multiplier, *ret0, *ret;
- /*
- * Reduce the exponent mod phi(p) and phi(q), to save time when
- * exponentiating mod p and mod q respectively. Of course, since p
- * and q are prime, phi(p) == p-1 and similarly for q.
- */
- pm1 = mp_copy(p);
- mp_sub_integer_into(pm1, pm1, 1);
- qm1 = mp_copy(q);
- mp_sub_integer_into(qm1, qm1, 1);
- pexp = mp_mod(exp, pm1);
- qexp = mp_mod(exp, qm1);
- /*
- * Do the two modpows.
- */
- mp_int *base_mod_p = mp_mod(base, p);
- presult = mp_modpow(base_mod_p, pexp, p);
- mp_free(base_mod_p);
- mp_int *base_mod_q = mp_mod(base, q);
- qresult = mp_modpow(base_mod_q, qexp, q);
- mp_free(base_mod_q);
- /*
- * Recombine the results. We want a value which is congruent to
- * qresult mod q, and to presult mod p.
- *
- * We know that iqmp * q is congruent to 1 * mod p (by definition
- * of iqmp) and to 0 mod q (obviously). So we start with qresult
- * (which is congruent to qresult mod both primes), and add on
- * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
- * to presult mod p without affecting its value mod q.
- *
- * (If presult-qresult < 0, we add p to it to keep it positive.)
- */
- unsigned presult_too_small = mp_cmp_hs(qresult, presult);
- mp_cond_add_into(presult, presult, p, presult_too_small);
- diff = mp_sub(presult, qresult);
- multiplier = mp_mul(iqmp, q);
- ret0 = mp_mul(multiplier, diff);
- mp_add_into(ret0, ret0, qresult);
- /*
- * Finally, reduce the result mod n.
- */
- ret = mp_mod(ret0, mod);
- /*
- * Free all the intermediate results before returning.
- */
- mp_free(pm1);
- mp_free(qm1);
- mp_free(pexp);
- mp_free(qexp);
- mp_free(presult);
- mp_free(qresult);
- mp_free(diff);
- mp_free(multiplier);
- mp_free(ret0);
- return ret;
- }
- /*
- * Wrapper on crt_modpow that looks up all the right values from an
- * RSAKey.
- */
- static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
- {
- return crt_modpow(input, key->private_exponent,
- key->modulus, key->p, key->q, key->iqmp);
- }
- mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
- {
- return rsa_privkey_op(input, key);
- }
- bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
- strbuf *outbuf)
- {
- strbuf *data = strbuf_new_nm();
- bool success = false;
- BinarySource src[1];
- {
- mp_int *b = rsa_ssh1_decrypt(input, key);
- for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
- put_byte(data, mp_get_byte(b, i));
- }
- mp_free(b);
- }
- BinarySource_BARE_INIT(src, data->u, data->len);
- /* Check PKCS#1 formatting prefix */
- if (get_byte(src) != 0) goto out;
- if (get_byte(src) != 2) goto out;
- while (1) {
- unsigned char byte = get_byte(src);
- if (get_err(src)) goto out;
- if (byte == 0)
- break;
- }
- /* Everything else is the payload */
- success = true;
- put_data(outbuf, get_ptr(src), get_avail(src));
- out:
- strbuf_free(data);
- return success;
- }
- static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
- {
- if (sb->len > 0)
- put_byte(sb, ',');
- put_data(sb, "0x", 2);
- char *hex = mp_get_hex(x);
- size_t hexlen = strlen(hex);
- put_data(sb, hex, hexlen);
- smemclr(hex, hexlen);
- sfree(hex);
- }
- char *rsastr_fmt(RSAKey *key)
- {
- strbuf *sb = strbuf_new();
- append_hex_to_strbuf(sb, key->exponent);
- append_hex_to_strbuf(sb, key->modulus);
- return strbuf_to_str(sb);
- }
- /*
- * Generate a fingerprint string for the key. Compatible with the
- * OpenSSH fingerprint code.
- */
- char *rsa_ssh1_fingerprint(RSAKey *key)
- {
- unsigned char digest[16];
- strbuf *out;
- int i;
- /*
- * The hash preimage for SSH-1 key fingerprinting consists of the
- * modulus and exponent _without_ any preceding length field -
- * just the minimum number of bytes to represent each integer,
- * stored big-endian, concatenated with no marker at the division
- * between them.
- */
- ssh_hash *hash = ssh_hash_new(&ssh_md5);
- for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
- put_byte(hash, mp_get_byte(key->modulus, i));
- for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
- put_byte(hash, mp_get_byte(key->exponent, i));
- ssh_hash_final(hash, digest);
- out = strbuf_new();
- put_fmt(out, "%"SIZEu" ", mp_get_nbits(key->modulus));
- for (i = 0; i < 16; i++)
- put_fmt(out, "%s%02x", i ? ":" : "", digest[i]);
- if (key->comment)
- put_fmt(out, " %s", key->comment);
- return strbuf_to_str(out);
- }
- /*
- * Wrap the output of rsa_ssh1_fingerprint up into the same kind of
- * structure that comes from ssh2_all_fingerprints.
- */
- char **rsa_ssh1_fake_all_fingerprints(RSAKey *key)
- {
- char **fingerprints = snewn(SSH_N_FPTYPES, char *);
- for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
- fingerprints[i] = NULL;
- fingerprints[SSH_FPTYPE_MD5] = rsa_ssh1_fingerprint(key);
- return fingerprints;
- }
- /*
- * Verify that the public data in an RSA key matches the private
- * data. We also check the private data itself: we ensure that p >
- * q and that iqmp really is the inverse of q mod p.
- */
- bool rsa_verify(RSAKey *key)
- {
- mp_int *n, *ed, *pm1, *qm1;
- unsigned ok = 1;
- /* Preliminary checks: p,q can't be 0 or 1. (Of course no other
- * very small value is any good either, but these are the values
- * we _must_ check for to avoid assertion failures further down
- * this function.) */
- if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2)))
- return false;
- /* n must equal pq. */
- n = mp_mul(key->p, key->q);
- ok &= mp_cmp_eq(n, key->modulus);
- mp_free(n);
- /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
- pm1 = mp_copy(key->p);
- mp_sub_integer_into(pm1, pm1, 1);
- ed = mp_modmul(key->exponent, key->private_exponent, pm1);
- mp_free(pm1);
- ok &= mp_eq_integer(ed, 1);
- mp_free(ed);
- qm1 = mp_copy(key->q);
- mp_sub_integer_into(qm1, qm1, 1);
- ed = mp_modmul(key->exponent, key->private_exponent, qm1);
- mp_free(qm1);
- ok &= mp_eq_integer(ed, 1);
- mp_free(ed);
- /*
- * Ensure p > q.
- *
- * I have seen key blobs in the wild which were generated with
- * p < q, so instead of rejecting the key in this case we
- * should instead flip them round into the canonical order of
- * p > q. This also involves regenerating iqmp.
- */
- mp_int *p_new = mp_max(key->p, key->q);
- mp_int *q_new = mp_min(key->p, key->q);
- mp_free(key->p);
- mp_free(key->q);
- mp_free(key->iqmp);
- key->p = p_new;
- key->q = q_new;
- key->iqmp = mp_invert(key->q, key->p);
- return ok;
- }
- void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
- RsaSsh1Order order)
- {
- put_uint32(bs, mp_get_nbits(key->modulus));
- if (order == RSA_SSH1_EXPONENT_FIRST) {
- put_mp_ssh1(bs, key->exponent);
- put_mp_ssh1(bs, key->modulus);
- } else {
- put_mp_ssh1(bs, key->modulus);
- put_mp_ssh1(bs, key->exponent);
- }
- }
- void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key)
- {
- rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST);
- put_mp_ssh1(bs, key->private_exponent);
- put_mp_ssh1(bs, key->iqmp);
- put_mp_ssh1(bs, key->q);
- put_mp_ssh1(bs, key->p);
- }
- /* Given an SSH-1 public key blob, determine its length. */
- int rsa_ssh1_public_blob_len(ptrlen data)
- {
- BinarySource src[1];
- BinarySource_BARE_INIT_PL(src, data);
- /* Expect a length word, then exponent and modulus. (It doesn't
- * even matter which order.) */
- get_uint32(src);
- mp_free(get_mp_ssh1(src));
- mp_free(get_mp_ssh1(src));
- if (get_err(src))
- return -1;
- /* Return the number of bytes consumed. */
- return src->pos;
- }
- void freersapriv(RSAKey *key)
- {
- if (key->private_exponent) {
- mp_free(key->private_exponent);
- key->private_exponent = NULL;
- }
- if (key->p) {
- mp_free(key->p);
- key->p = NULL;
- }
- if (key->q) {
- mp_free(key->q);
- key->q = NULL;
- }
- if (key->iqmp) {
- mp_free(key->iqmp);
- key->iqmp = NULL;
- }
- }
- void freersakey(RSAKey *key)
- {
- freersapriv(key);
- if (key->modulus) {
- mp_free(key->modulus);
- key->modulus = NULL;
- }
- if (key->exponent) {
- mp_free(key->exponent);
- key->exponent = NULL;
- }
- if (key->comment) {
- sfree(key->comment);
- key->comment = NULL;
- }
- }
- /* ----------------------------------------------------------------------
- * Implementation of the ssh-rsa signing key type family.
- */
- struct ssh2_rsa_extra {
- unsigned signflags;
- };
- static void rsa2_freekey(ssh_key *key); /* forward reference */
- static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
- {
- BinarySource src[1];
- RSAKey *rsa;
- BinarySource_BARE_INIT_PL(src, data);
- if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
- return NULL;
- rsa = snew(RSAKey);
- rsa->sshk.vt = self;
- rsa->exponent = get_mp_ssh2(src);
- rsa->modulus = get_mp_ssh2(src);
- rsa->private_exponent = NULL;
- rsa->p = rsa->q = rsa->iqmp = NULL;
- rsa->comment = NULL;
- if (get_err(src)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static void rsa2_freekey(ssh_key *key)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- freersakey(rsa);
- sfree(rsa);
- }
- static char *rsa2_cache_str(ssh_key *key)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- return rsastr_fmt(rsa);
- }
- static key_components *rsa2_components(ssh_key *key)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- return rsa_components(rsa);
- }
- static bool rsa2_has_private(ssh_key *key)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- return rsa->private_exponent != NULL;
- }
- static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- put_stringz(bs, "ssh-rsa");
- put_mp_ssh2(bs, rsa->exponent);
- put_mp_ssh2(bs, rsa->modulus);
- }
- static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- put_mp_ssh2(bs, rsa->private_exponent);
- put_mp_ssh2(bs, rsa->p);
- put_mp_ssh2(bs, rsa->q);
- put_mp_ssh2(bs, rsa->iqmp);
- }
- static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
- ptrlen pub, ptrlen priv)
- {
- BinarySource src[1];
- ssh_key *sshk;
- RSAKey *rsa;
- sshk = rsa2_new_pub(self, pub);
- if (!sshk)
- return NULL;
- rsa = container_of(sshk, RSAKey, sshk);
- BinarySource_BARE_INIT_PL(src, priv);
- rsa->private_exponent = get_mp_ssh2(src);
- rsa->p = get_mp_ssh2(src);
- rsa->q = get_mp_ssh2(src);
- rsa->iqmp = get_mp_ssh2(src);
- if (get_err(src) || !rsa_verify(rsa)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
- BinarySource *src)
- {
- RSAKey *rsa;
- rsa = snew(RSAKey);
- rsa->sshk.vt = &ssh_rsa;
- rsa->comment = NULL;
- rsa->modulus = get_mp_ssh2(src);
- rsa->exponent = get_mp_ssh2(src);
- rsa->private_exponent = get_mp_ssh2(src);
- rsa->iqmp = get_mp_ssh2(src);
- rsa->p = get_mp_ssh2(src);
- rsa->q = get_mp_ssh2(src);
- if (get_err(src) || !rsa_verify(rsa)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- put_mp_ssh2(bs, rsa->modulus);
- put_mp_ssh2(bs, rsa->exponent);
- put_mp_ssh2(bs, rsa->private_exponent);
- put_mp_ssh2(bs, rsa->iqmp);
- put_mp_ssh2(bs, rsa->p);
- put_mp_ssh2(bs, rsa->q);
- }
- static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
- {
- ssh_key *sshk;
- RSAKey *rsa;
- int ret;
- sshk = rsa2_new_pub(self, pub);
- if (!sshk)
- return -1;
- rsa = container_of(sshk, RSAKey, sshk);
- ret = mp_get_nbits(rsa->modulus);
- rsa2_freekey(&rsa->sshk);
- return ret;
- }
- static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
- unsigned flags, const char **protocol_id_out)
- {
- const ssh_hashalg *halg;
- const char *protocol_id;
- if (flags & SSH_AGENT_RSA_SHA2_256) {
- halg = &ssh_sha256;
- protocol_id = "rsa-sha2-256";
- } else if (flags & SSH_AGENT_RSA_SHA2_512) {
- halg = &ssh_sha512;
- protocol_id = "rsa-sha2-512";
- } else {
- halg = &ssh_sha1;
- protocol_id = "ssh-rsa";
- }
- if (protocol_id_out)
- *protocol_id_out = protocol_id;
- return halg;
- }
- static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
- {
- if (halg == &ssh_sha1) {
- /*
- * This is the magic ASN.1/DER prefix that goes in the decoded
- * signature, between the string of FFs and the actual SHA-1
- * hash value. The meaning of it is:
- *
- * 00 -- this marks the end of the FFs; not part of the ASN.1
- * bit itself
- *
- * 30 21 -- a constructed SEQUENCE of length 0x21
- * 30 09 -- a constructed sub-SEQUENCE of length 9
- * 06 05 -- an object identifier, length 5
- * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
- * (the 1,3 comes from 0x2B = 43 = 40*1+3)
- * 05 00 -- NULL
- * 04 14 -- a primitive OCTET STRING of length 0x14
- * [0x14 bytes of hash data follows]
- *
- * The object id in the middle there is listed as `id-sha1' in
- * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
- * (the ASN module for PKCS #1) and its expanded form is as
- * follows:
- *
- * id-sha1 OBJECT IDENTIFIER ::= {
- * iso(1) identified-organization(3) oiw(14) secsig(3)
- * algorithms(2) 26 }
- */
- static const unsigned char sha1_asn1_prefix[] = {
- 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
- 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
- };
- return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
- }
- if (halg == &ssh_sha256) {
- /*
- * A similar piece of ASN.1 used for signatures using SHA-256,
- * in the same format but differing only in various length
- * fields and OID.
- */
- static const unsigned char sha256_asn1_prefix[] = {
- 0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
- 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
- 0x05, 0x00, 0x04, 0x20,
- };
- return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
- }
- if (halg == &ssh_sha512) {
- /*
- * And one more for SHA-512.
- */
- static const unsigned char sha512_asn1_prefix[] = {
- 0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
- 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
- 0x05, 0x00, 0x04, 0x40,
- };
- return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
- }
- unreachable("bad hash algorithm for RSA PKCS#1");
- }
- static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
- {
- ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
- return halg->hlen + asn1_prefix.len + 2;
- }
- static unsigned char *rsa_pkcs1_signature_string(
- size_t nbytes, const ssh_hashalg *halg, ptrlen data)
- {
- size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
- assert(nbytes >= fixed_parts);
- size_t padding = nbytes - fixed_parts;
- ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
- unsigned char *bytes = snewn(nbytes, unsigned char);
- bytes[0] = 0;
- bytes[1] = 1;
- memset(bytes + 2, 0xFF, padding);
- memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);
- ssh_hash *h = ssh_hash_new(halg);
- put_datapl(h, data);
- ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);
- return bytes;
- }
- static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- BinarySource src[1];
- ptrlen type, in_pl;
- mp_int *in, *out;
- const struct ssh2_rsa_extra *extra =
- (const struct ssh2_rsa_extra *)key->vt->extra;
- const ssh_hashalg *halg = rsa2_hash_alg_for_flags(extra->signflags, NULL);
- /* Start by making sure the key is even long enough to encode a
- * signature. If not, everything fails to verify. */
- size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
- if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
- return false;
- BinarySource_BARE_INIT_PL(src, sig);
- type = get_string(src);
- /*
- * RFC 4253 section 6.6: the signature integer in an ssh-rsa
- * signature is 'without lengths or padding'. That is, we _don't_
- * expect the usual leading zero byte if the topmost bit of the
- * first byte is set. (However, because of the possibility of
- * BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
- * there.) So we can't use get_mp_ssh2, which enforces that
- * leading-byte scheme; instead we use get_string and
- * mp_from_bytes_be, which will tolerate anything.
- */
- in_pl = get_string(src);
- if (get_err(src) || !ptrlen_eq_string(type, key->vt->ssh_id))
- return false;
- in = mp_from_bytes_be(in_pl);
- out = mp_modpow(in, rsa->exponent, rsa->modulus);
- mp_free(in);
- unsigned diff = 0;
- unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
- for (size_t i = 0; i < nbytes; i++)
- diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
- smemclr(bytes, nbytes);
- sfree(bytes);
- mp_free(out);
- return diff == 0;
- }
- static void rsa2_sign(ssh_key *key, ptrlen data,
- unsigned flags, BinarySink *bs)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- unsigned char *bytes;
- size_t nbytes;
- mp_int *in, *out;
- const ssh_hashalg *halg;
- const char *sign_alg_name;
- const struct ssh2_rsa_extra *extra =
- (const struct ssh2_rsa_extra *)key->vt->extra;
- flags |= extra->signflags;
- halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
- nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
- bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
- in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
- smemclr(bytes, nbytes);
- sfree(bytes);
- out = rsa_privkey_op(in, rsa);
- mp_free(in);
- put_stringz(bs, sign_alg_name);
- if (flags == 0) {
- /*
- * Original "ssh-rsa", per RFC 4253 section 6.6, stores the
- * signature integer in a string without padding - not even
- * the leading zero byte that an ordinary SSH-2 mpint would
- * require to avoid looking like two's complement.
- *
- * "The value for 'rsa_signature_blob' is encoded as a string
- * containing s (which is an integer, without lengths or
- * padding, unsigned, and in network byte order)."
- */
- nbytes = (mp_get_nbits(out) + 7) / 8;
- } else {
- /*
- * The SHA-256 and SHA-512 signature systems, per RFC 8332
- * section 3, should be padded to the length of the key
- * modulus.
- *
- * "The value for 'rsa_signature_blob' is encoded as a string
- * that contains an octet string S (which is the output of
- * RSASSA-PKCS1-v1_5) and that has the same length (in octets)
- * as the RSA modulus."
- *
- * Awkwardly, RFC 8332 doesn't say whether that means the
- * 'raw' length of the RSA modulus (that is, ceil(n/8) for an
- * n-bit key) or the length it would occupy as an SSH-2 mpint.
- * My interpretation is the former.
- */
- nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
- }
- put_uint32(bs, nbytes);
- for (size_t i = 0; i < nbytes; i++)
- put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
- mp_free(out);
- }
- static char *rsa2_invalid(ssh_key *key, unsigned flags)
- {
- RSAKey *rsa = container_of(key, RSAKey, sshk);
- size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
- const char *sign_alg_name;
- const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
- if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
- return dupprintf(
- "%"SIZEu"-bit RSA key is too short to generate %s signatures",
- bits, sign_alg_name);
- }
- return NULL;
- }
- static unsigned ssh_rsa_supported_flags(const ssh_keyalg *self)
- {
- return SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512;
- }
- static const char *ssh_rsa_alternate_ssh_id(
- const ssh_keyalg *self, unsigned flags)
- {
- if (flags & SSH_AGENT_RSA_SHA2_512)
- return ssh_rsa_sha512.ssh_id;
- if (flags & SSH_AGENT_RSA_SHA2_256)
- return ssh_rsa_sha256.ssh_id;
- return self->ssh_id;
- }
- static char *rsa2_alg_desc(const ssh_keyalg *self) { return dupstr("RSA"); }
- static const struct ssh2_rsa_extra
- rsa_extra = { 0 },
- rsa_sha256_extra = { SSH_AGENT_RSA_SHA2_256 },
- rsa_sha512_extra = { SSH_AGENT_RSA_SHA2_512 };
- #define COMMON_KEYALG_FIELDS \
- .new_pub = rsa2_new_pub, \
- .new_priv = rsa2_new_priv, \
- .new_priv_openssh = rsa2_new_priv_openssh, \
- .freekey = rsa2_freekey, \
- .invalid = rsa2_invalid, \
- .sign = rsa2_sign, \
- .verify = rsa2_verify, \
- .public_blob = rsa2_public_blob, \
- .private_blob = rsa2_private_blob, \
- .openssh_blob = rsa2_openssh_blob, \
- .has_private = rsa2_has_private, \
- .cache_str = rsa2_cache_str, \
- .components = rsa2_components, \
- .base_key = nullkey_base_key, \
- .pubkey_bits = rsa2_pubkey_bits, \
- .alg_desc = rsa2_alg_desc, \
- .variable_size = nullkey_variable_size_yes, \
- .cache_id = "rsa2"
- const ssh_keyalg ssh_rsa = {
- COMMON_KEYALG_FIELDS,
- .ssh_id = "ssh-rsa",
- .supported_flags = ssh_rsa_supported_flags,
- .alternate_ssh_id = ssh_rsa_alternate_ssh_id,
- .extra = &rsa_extra,
- };
- const ssh_keyalg ssh_rsa_sha256 = {
- COMMON_KEYALG_FIELDS,
- .ssh_id = "rsa-sha2-256",
- .supported_flags = nullkey_supported_flags,
- .alternate_ssh_id = nullkey_alternate_ssh_id,
- .extra = &rsa_sha256_extra,
- };
- const ssh_keyalg ssh_rsa_sha512 = {
- COMMON_KEYALG_FIELDS,
- .ssh_id = "rsa-sha2-512",
- .supported_flags = nullkey_supported_flags,
- .alternate_ssh_id = nullkey_alternate_ssh_id,
- .extra = &rsa_sha512_extra,
- };
- RSAKey *ssh_rsakex_newkey(ptrlen data)
- {
- ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
- if (!sshk)
- return NULL;
- return container_of(sshk, RSAKey, sshk);
- }
- void ssh_rsakex_freekey(RSAKey *key)
- {
- rsa2_freekey(&key->sshk);
- }
- int ssh_rsakex_klen(RSAKey *rsa)
- {
- return mp_get_nbits(rsa->modulus);
- }
- static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
- void *vdata, int datalen)
- {
- unsigned char *data = (unsigned char *)vdata;
- unsigned count = 0;
- ssh_hash *s = ssh_hash_new(h);
- while (datalen > 0) {
- int i, max = (datalen > h->hlen ? h->hlen : datalen);
- unsigned char hash[MAX_HASH_LEN];
- ssh_hash_reset(s);
- assert(h->hlen <= MAX_HASH_LEN);
- put_data(s, seed, seedlen);
- put_uint32(s, count);
- ssh_hash_digest(s, hash);
- count++;
- for (i = 0; i < max; i++)
- data[i] ^= hash[i];
- data += max;
- datalen -= max;
- }
- ssh_hash_free(s);
- }
- strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
- {
- mp_int *b1, *b2;
- int k, i;
- char *p;
- const int HLEN = h->hlen;
- /*
- * Here we encrypt using RSAES-OAEP. Essentially this means:
- *
- * - we have a SHA-based `mask generation function' which
- * creates a pseudo-random stream of mask data
- * deterministically from an input chunk of data.
- *
- * - we have a random chunk of data called a seed.
- *
- * - we use the seed to generate a mask which we XOR with our
- * plaintext.
- *
- * - then we use _the masked plaintext_ to generate a mask
- * which we XOR with the seed.
- *
- * - then we concatenate the masked seed and the masked
- * plaintext, and RSA-encrypt that lot.
- *
- * The result is that the data input to the encryption function
- * is random-looking and (hopefully) contains no exploitable
- * structure such as PKCS1-v1_5 does.
- *
- * For a precise specification, see RFC 3447, section 7.1.1.
- * Some of the variable names below are derived from that, so
- * it'd probably help to read it anyway.
- */
- /* k denotes the length in octets of the RSA modulus. */
- k = (7 + mp_get_nbits(rsa->modulus)) / 8;
- /* The length of the input data must be at most k - 2hLen - 2. */
- assert(in.len > 0 && in.len <= k - 2*HLEN - 2);
- /* The length of the output data wants to be precisely k. */
- strbuf *toret = strbuf_new_nm();
- int outlen = k;
- unsigned char *out = strbuf_append(toret, outlen);
- /*
- * Now perform EME-OAEP encoding. First set up all the unmasked
- * output data.
- */
- /* Leading byte zero. */
- out[0] = 0;
- /* At position 1, the seed: HLEN bytes of random data. */
- random_read(out + 1, HLEN);
- /* At position 1+HLEN, the data block DB, consisting of: */
- /* The hash of the label (we only support an empty label here) */
- hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1);
- /* A bunch of zero octets */
- memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
- /* A single 1 octet, followed by the input message data. */
- out[outlen - in.len - 1] = 1;
- memcpy(out + outlen - in.len, in.ptr, in.len);
- /*
- * Now use the seed data to mask the block DB.
- */
- oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
- /*
- * And now use the masked DB to mask the seed itself.
- */
- oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
- /*
- * Now `out' contains precisely the data we want to
- * RSA-encrypt.
- */
- b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
- b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
- p = (char *)out;
- for (i = outlen; i--;) {
- *p++ = mp_get_byte(b2, i);
- }
- mp_free(b1);
- mp_free(b2);
- /*
- * And we're done.
- */
- return toret;
- }
- mp_int *ssh_rsakex_decrypt(
- RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
- {
- mp_int *b1, *b2;
- int outlen, i;
- unsigned char *out;
- unsigned char labelhash[64];
- BinarySource src[1];
- const int HLEN = h->hlen;
- /*
- * Decryption side of the RSA key exchange operation.
- */
- /* The length of the encrypted data should be exactly the length
- * in octets of the RSA modulus.. */
- outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
- if (ciphertext.len != outlen)
- return NULL;
- /* Do the RSA decryption, and extract the result into a byte array. */
- b1 = mp_from_bytes_be(ciphertext);
- b2 = rsa_privkey_op(b1, rsa);
- out = snewn(outlen, unsigned char);
- for (i = 0; i < outlen; i++)
- out[i] = mp_get_byte(b2, outlen-1-i);
- mp_free(b1);
- mp_free(b2);
- /* Do the OAEP masking operations, in the reverse order from encryption */
- oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
- oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
- /* Check the leading byte is zero. */
- if (out[0] != 0) {
- sfree(out);
- return NULL;
- }
- /* Check the label hash at position 1+HLEN */
- assert(HLEN <= lenof(labelhash));
- hash_simple(h, PTRLEN_LITERAL(""), labelhash);
- if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
- sfree(out);
- return NULL;
- }
- /* Expect zero bytes followed by a 1 byte */
- for (i = 1 + 2 * HLEN; i < outlen; i++) {
- if (out[i] == 1) {
- i++; /* skip over the 1 byte */
- break;
- } else if (out[i] != 0) {
- sfree(out);
- return NULL;
- }
- }
- /* And what's left is the input message data, which should be
- * encoded as an ordinary SSH-2 mpint. */
- BinarySource_BARE_INIT(src, out + i, outlen - i);
- b1 = get_mp_ssh2(src);
- sfree(out);
- if (get_err(src) || get_avail(src) != 0) {
- mp_free(b1);
- return NULL;
- }
- /* Success! */
- return b1;
- }
- static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
- static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
- static const ssh_kex ssh_rsa_kex_sha1 = {
- .name = "rsa1024-sha1",
- .main_type = KEXTYPE_RSA,
- .hash = &ssh_sha1,
- .extra = &ssh_rsa_kex_extra_sha1,
- };
- static const ssh_kex ssh_rsa_kex_sha256 = {
- .name = "rsa2048-sha256",
- .main_type = KEXTYPE_RSA,
- .hash = &ssh_sha256,
- .extra = &ssh_rsa_kex_extra_sha256,
- };
- static const ssh_kex *const rsa_kex_list[] = {
- &ssh_rsa_kex_sha256,
- &ssh_rsa_kex_sha1
- };
- const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };
|