123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- /*
- * mpint_i.h: definitions used internally by the bignum code, and
- * also a few other vaguely-bignum-like places.
- */
- /* ----------------------------------------------------------------------
- * The assorted conditional definitions of BignumInt and multiply
- * macros used throughout the bignum code to treat numbers as arrays
- * of the most conveniently sized word for the target machine.
- * Exported so that other code (e.g. poly1305) can use it too.
- *
- * This code must export, in whatever ifdef branch it ends up in:
- *
- * - two types: 'BignumInt' and 'BignumCarry'. BignumInt is an
- * unsigned integer type which will be used as the base word size
- * for all bignum operations. BignumCarry is an unsigned integer
- * type used to hold the carry flag taken as input and output by
- * the BignumADC macro (see below).
- *
- * - five constant macros:
- * + BIGNUM_INT_BITS, the number of bits in BignumInt,
- * + BIGNUM_INT_BYTES, the number of bytes that works out to
- * + BIGNUM_TOP_BIT, the BignumInt value consisting of only the top bit
- * + BIGNUM_INT_MASK, the BignumInt value with all bits set
- * + BIGNUM_INT_BITS_BITS, log to the base 2 of BIGNUM_INT_BITS.
- *
- * - four statement macros: BignumADC, BignumMUL, BignumMULADD,
- * BignumMULADD2. These do various kinds of multi-word arithmetic,
- * and all produce two output values.
- * * BignumADC(ret,retc,a,b,c) takes input BignumInt values a,b
- * and a BignumCarry c, and outputs a BignumInt ret = a+b+c and
- * a BignumCarry retc which is the carry off the top of that
- * addition.
- * * BignumMUL(rh,rl,a,b) returns the two halves of the
- * double-width product a*b.
- * * BignumMULADD(rh,rl,a,b,addend) returns the two halves of the
- * double-width value a*b + addend.
- * * BignumMULADD2(rh,rl,a,b,addend1,addend2) returns the two
- * halves of the double-width value a*b + addend1 + addend2.
- *
- * Every branch of the main ifdef below defines the type BignumInt and
- * the value BIGNUM_INT_BITS_BITS. The other constant macros are
- * filled in by common code further down.
- *
- * Most branches also define a macro DEFINE_BIGNUMDBLINT containing a
- * typedef statement which declares a type _twice_ the length of a
- * BignumInt. This causes the common code further down to produce a
- * default implementation of the four statement macros in terms of
- * that double-width type, and also to defined BignumCarry to be
- * BignumInt.
- *
- * However, if a particular compile target does not have a type twice
- * the length of the BignumInt you want to use but it does provide
- * some alternative means of doing add-with-carry and double-word
- * multiply, then the ifdef branch in question can just define
- * BignumCarry and the four statement macros itself, and that's fine
- * too.
- */
- /* You can lower the BignumInt size by defining BIGNUM_OVERRIDE on the
- * command line to be your chosen max value of BIGNUM_INT_BITS_BITS */
- #if defined BIGNUM_OVERRIDE
- #define BB_OK(b) ((b) <= BIGNUM_OVERRIDE)
- #else
- #define BB_OK(b) (1)
- #endif
- #if defined __SIZEOF_INT128__ && BB_OK(6)
- /*
- * 64-bit BignumInt using gcc/clang style 128-bit BignumDblInt.
- *
- * gcc and clang both provide a __uint128_t type on 64-bit targets
- * (and, when they do, indicate its presence by the above macro),
- * using the same 'two machine registers' kind of code generation
- * that 32-bit targets use for 64-bit ints.
- */
- typedef unsigned long long BignumInt;
- #define BIGNUM_INT_BITS_BITS 6
- #define DEFINE_BIGNUMDBLINT typedef __uint128_t BignumDblInt
- #elif defined _MSC_VER && defined _M_AMD64 && BB_OK(6)
- /*
- * 64-bit BignumInt, using Visual Studio x86-64 compiler intrinsics.
- *
- * 64-bit Visual Studio doesn't provide very much in the way of help
- * here: there's no int128 type, and also no inline assembler giving
- * us direct access to the x86-64 MUL or ADC instructions. However,
- * there are compiler intrinsics giving us that access, so we can
- * use those - though it turns out we have to be a little careful,
- * since they seem to generate wrong code if their pointer-typed
- * output parameters alias their inputs. Hence all the internal temp
- * variables inside the macros.
- */
- #include <intrin.h>
- typedef unsigned char BignumCarry; /* the type _addcarry_u64 likes to use */
- typedef unsigned __int64 BignumInt;
- #define BIGNUM_INT_BITS_BITS 6
- #define BignumADC(ret, retc, a, b, c) do \
- { \
- BignumInt ADC_tmp; \
- (retc) = _addcarry_u64(c, a, b, &ADC_tmp); \
- (ret) = ADC_tmp; \
- } while (0)
- #define BignumMUL(rh, rl, a, b) do \
- { \
- BignumInt MULADD_hi; \
- (rl) = _umul128(a, b, &MULADD_hi); \
- (rh) = MULADD_hi; \
- } while (0)
- #define BignumMULADD(rh, rl, a, b, addend) do \
- { \
- BignumInt MULADD_lo, MULADD_hi; \
- MULADD_lo = _umul128(a, b, &MULADD_hi); \
- MULADD_hi += _addcarry_u64(0, MULADD_lo, (addend), &(rl)); \
- (rh) = MULADD_hi; \
- } while (0)
- #define BignumMULADD2(rh, rl, a, b, addend1, addend2) do \
- { \
- BignumInt MULADD_lo1, MULADD_lo2, MULADD_hi; \
- MULADD_lo1 = _umul128(a, b, &MULADD_hi); \
- MULADD_hi += _addcarry_u64(0, MULADD_lo1, (addend1), &MULADD_lo2); \
- MULADD_hi += _addcarry_u64(0, MULADD_lo2, (addend2), &(rl)); \
- (rh) = MULADD_hi; \
- } while (0)
- #elif (defined __GNUC__ || defined _LLP64 || __STDC__ >= 199901L) && BB_OK(5)
- /* 32-bit BignumInt, using C99 unsigned long long as BignumDblInt */
- typedef unsigned int BignumInt;
- #define BIGNUM_INT_BITS_BITS 5
- #define DEFINE_BIGNUMDBLINT typedef unsigned long long BignumDblInt
- #elif defined _MSC_VER && BB_OK(5)
- /* 32-bit BignumInt, using Visual Studio __int64 as BignumDblInt */
- typedef unsigned int BignumInt;
- #define BIGNUM_INT_BITS_BITS 5
- #define DEFINE_BIGNUMDBLINT typedef unsigned __int64 BignumDblInt
- #elif defined _LP64 && BB_OK(5)
- /*
- * 32-bit BignumInt, using unsigned long itself as BignumDblInt.
- *
- * Only for platforms where long is 64 bits, of course.
- */
- typedef unsigned int BignumInt;
- #define BIGNUM_INT_BITS_BITS 5
- #define DEFINE_BIGNUMDBLINT typedef unsigned long BignumDblInt
- #elif BB_OK(4)
- /*
- * 16-bit BignumInt, using unsigned long as BignumDblInt.
- *
- * This is the final fallback for real emergencies: C89 guarantees
- * unsigned short/long to be at least the required sizes, so this
- * should work on any C implementation at all. But it'll be
- * noticeably slow, so if you find yourself in this case you
- * probably want to move heaven and earth to find an alternative!
- */
- typedef unsigned short BignumInt;
- #define BIGNUM_INT_BITS_BITS 4
- #define DEFINE_BIGNUMDBLINT typedef unsigned long BignumDblInt
- #else
- /* Should only get here if BB_OK(4) evaluated false, i.e. the
- * command line defined BIGNUM_OVERRIDE to an absurdly small
- * value. */
- #error Must define BIGNUM_OVERRIDE to at least 4
- #endif
- #undef BB_OK
- /*
- * Common code across all branches of that ifdef: define all the
- * easy constant macros in terms of BIGNUM_INT_BITS_BITS.
- */
- #define BIGNUM_INT_BITS (1 << BIGNUM_INT_BITS_BITS)
- #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
- #define BIGNUM_TOP_BIT (((BignumInt)1) << (BIGNUM_INT_BITS-1))
- #define BIGNUM_INT_MASK (BIGNUM_TOP_BIT | (BIGNUM_TOP_BIT-1))
- /*
- * Just occasionally, we might need a GET_nnBIT_xSB_FIRST macro to
- * operate on whatever BignumInt is.
- */
- #if BIGNUM_INT_BITS_BITS == 4
- #define GET_BIGNUMINT_MSB_FIRST GET_16BIT_MSB_FIRST
- #define GET_BIGNUMINT_LSB_FIRST GET_16BIT_LSB_FIRST
- #define PUT_BIGNUMINT_MSB_FIRST PUT_16BIT_MSB_FIRST
- #define PUT_BIGNUMINT_LSB_FIRST PUT_16BIT_LSB_FIRST
- #elif BIGNUM_INT_BITS_BITS == 5
- #define GET_BIGNUMINT_MSB_FIRST GET_32BIT_MSB_FIRST
- #define GET_BIGNUMINT_LSB_FIRST GET_32BIT_LSB_FIRST
- #define PUT_BIGNUMINT_MSB_FIRST PUT_32BIT_MSB_FIRST
- #define PUT_BIGNUMINT_LSB_FIRST PUT_32BIT_LSB_FIRST
- #elif BIGNUM_INT_BITS_BITS == 6
- #define GET_BIGNUMINT_MSB_FIRST GET_64BIT_MSB_FIRST
- #define GET_BIGNUMINT_LSB_FIRST GET_64BIT_LSB_FIRST
- #define PUT_BIGNUMINT_MSB_FIRST PUT_64BIT_MSB_FIRST
- #define PUT_BIGNUMINT_LSB_FIRST PUT_64BIT_LSB_FIRST
- #else
- #error Ran out of options for GET_BIGNUMINT_xSB_FIRST
- #endif
- /*
- * Common code across _most_ branches of the ifdef: define a set of
- * statement macros in terms of the BignumDblInt type provided. In
- * this case, we also define BignumCarry to be the same thing as
- * BignumInt, for simplicity.
- */
- #ifdef DEFINE_BIGNUMDBLINT
- typedef BignumInt BignumCarry;
- #define BignumADC(ret, retc, a, b, c) do \
- { \
- DEFINE_BIGNUMDBLINT; \
- BignumDblInt ADC_temp = (BignumInt)(a); \
- ADC_temp += (BignumInt)(b); \
- ADC_temp += (c); \
- (ret) = (BignumInt)ADC_temp; \
- (retc) = (BignumCarry)(ADC_temp >> BIGNUM_INT_BITS); \
- } while (0)
- #define BignumMUL(rh, rl, a, b) do \
- { \
- DEFINE_BIGNUMDBLINT; \
- BignumDblInt MUL_temp = (BignumInt)(a); \
- MUL_temp *= (BignumInt)(b); \
- (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS); \
- (rl) = (BignumInt)(MUL_temp); \
- } while (0)
- #define BignumMULADD(rh, rl, a, b, addend) do \
- { \
- DEFINE_BIGNUMDBLINT; \
- BignumDblInt MUL_temp = (BignumInt)(a); \
- MUL_temp *= (BignumInt)(b); \
- MUL_temp += (BignumInt)(addend); \
- (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS); \
- (rl) = (BignumInt)(MUL_temp); \
- } while (0)
- #define BignumMULADD2(rh, rl, a, b, addend1, addend2) do \
- { \
- DEFINE_BIGNUMDBLINT; \
- BignumDblInt MUL_temp = (BignumInt)(a); \
- MUL_temp *= (BignumInt)(b); \
- MUL_temp += (BignumInt)(addend1); \
- MUL_temp += (BignumInt)(addend2); \
- (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS); \
- (rl) = (BignumInt)(MUL_temp); \
- } while (0)
- #endif /* DEFINE_BIGNUMDBLINT */
- /* ----------------------------------------------------------------------
- * Data structures used inside mpint.c.
- */
- struct mp_int {
- size_t nw;
- BignumInt *w;
- };
- struct MontyContext {
- /*
- * The actual modulus.
- */
- mp_int *m;
- /*
- * Montgomery multiplication works by selecting a value r > m,
- * coprime to m, which is really easy to divide by. In binary
- * arithmetic, that means making it a power of 2; in fact we make
- * it a whole number of BignumInt.
- *
- * We don't store r directly as an mp_int (there's no need). But
- * its value is 2^rbits; we also store rw = rbits/BIGNUM_INT_BITS
- * (the corresponding word offset within an mp_int).
- *
- * pw is the number of words needed to store an mp_int you're
- * doing reduction on: it has to be big enough to hold the sum of
- * an input value up to m^2 plus an extra addend up to m*r.
- */
- size_t rbits, rw, pw;
- /*
- * The key step in Montgomery reduction requires the inverse of -m
- * mod r.
- */
- mp_int *minus_minv_mod_r;
- /*
- * r^1, r^2 and r^3 mod m, which are used for various purposes.
- *
- * (Annoyingly, this is one of the rare cases where it would have
- * been nicer to have a Pascal-style 1-indexed array. I couldn't
- * _quite_ bring myself to put a gratuitous zero element in here.
- * So you just have to live with getting r^k by taking the [k-1]th
- * element of this array.)
- */
- mp_int *powers_of_r_mod_m[3];
- /*
- * Persistent scratch space from which monty_* functions can
- * allocate storage for intermediate values.
- */
- mp_int *scratch;
- };
- /* Functions shared between mpint.c and mpunsafe.c */
- mp_int *mp_make_sized(size_t nw);
|