sshmd5.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. /* This code has been heavily hacked by Tatu Ylonen <ylo@cs.hut.fi> to
  2. make it compile on machines like Cray that don't have a 32 bit integer
  3. type. */
  4. /*
  5. * This code implements the MD5 message-digest algorithm.
  6. * The algorithm is due to Ron Rivest. This code was
  7. * written by Colin Plumb in 1993, no copyright is claimed.
  8. * This code is in the public domain; do with it what you wish.
  9. *
  10. * Equivalent code is available from RSA Data Security, Inc.
  11. * This code has been tested against that, and is equivalent,
  12. * except that you don't need to include two pages of legalese
  13. * with every copy.
  14. *
  15. * To compute the message digest of a chunk of bytes, declare an
  16. * MD5Context structure, pass it to MD5Init, call MD5Update as
  17. * needed on buffers full of bytes, and then call MD5Final, which
  18. * will fill a supplied 16-byte array with the digest.
  19. */
  20. #include "ssh.h"
  21. #define GET_32BIT_LSB_FIRST(cp) \
  22. (((unsigned long)(unsigned char)(cp)[0]) | \
  23. ((unsigned long)(unsigned char)(cp)[1] << 8) | \
  24. ((unsigned long)(unsigned char)(cp)[2] << 16) | \
  25. ((unsigned long)(unsigned char)(cp)[3] << 24))
  26. #define PUT_32BIT_LSB_FIRST(cp, value) do { \
  27. (cp)[0] = (value); \
  28. (cp)[1] = (value) >> 8; \
  29. (cp)[2] = (value) >> 16; \
  30. (cp)[3] = (value) >> 24; } while (0)
  31. void MD5Transform(uint32 buf[4], const unsigned char in[64]);
  32. /*
  33. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  34. * initialization constants.
  35. */
  36. void MD5Init(struct MD5Context *ctx)
  37. {
  38. ctx->buf[0] = 0x67452301;
  39. ctx->buf[1] = 0xefcdab89;
  40. ctx->buf[2] = 0x98badcfe;
  41. ctx->buf[3] = 0x10325476;
  42. ctx->bits[0] = 0;
  43. ctx->bits[1] = 0;
  44. }
  45. /*
  46. * Update context to reflect the concatenation of another buffer full
  47. * of bytes.
  48. */
  49. void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
  50. {
  51. uint32 t;
  52. /* Update bitcount */
  53. t = ctx->bits[0];
  54. if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
  55. ctx->bits[1]++; /* Carry from low to high */
  56. ctx->bits[1] += len >> 29;
  57. t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
  58. /* Handle any leading odd-sized chunks */
  59. if (t) {
  60. unsigned char *p = ctx->in + t;
  61. t = 64 - t;
  62. if (len < t) {
  63. memcpy(p, buf, len);
  64. return;
  65. }
  66. memcpy(p, buf, t);
  67. MD5Transform(ctx->buf, ctx->in);
  68. buf += t;
  69. len -= t;
  70. }
  71. /* Process data in 64-byte chunks */
  72. while (len >= 64) {
  73. memcpy(ctx->in, buf, 64);
  74. MD5Transform(ctx->buf, ctx->in);
  75. buf += 64;
  76. len -= 64;
  77. }
  78. /* Handle any remaining bytes of data. */
  79. memcpy(ctx->in, buf, len);
  80. }
  81. /*
  82. * Final wrapup - pad to 64-byte boundary with the bit pattern
  83. * 1 0* (64-bit count of bits processed, MSB-first)
  84. */
  85. void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
  86. {
  87. unsigned count;
  88. unsigned char *p;
  89. /* Compute number of bytes mod 64 */
  90. count = (ctx->bits[0] >> 3) & 0x3F;
  91. /* Set the first char of padding to 0x80. This is safe since there is
  92. always at least one byte free */
  93. p = ctx->in + count;
  94. *p++ = 0x80;
  95. /* Bytes of padding needed to make 64 bytes */
  96. count = 64 - 1 - count;
  97. /* Pad out to 56 mod 64 */
  98. if (count < 8) {
  99. /* Two lots of padding: Pad the first block to 64 bytes */
  100. memset(p, 0, count);
  101. MD5Transform(ctx->buf, ctx->in);
  102. /* Now fill the next block with 56 bytes */
  103. memset(ctx->in, 0, 56);
  104. } else {
  105. /* Pad block to 56 bytes */
  106. memset(p, 0, count - 8);
  107. }
  108. /* Append length in bits and transform */
  109. PUT_32BIT_LSB_FIRST(ctx->in + 56, ctx->bits[0]);
  110. PUT_32BIT_LSB_FIRST(ctx->in + 60, ctx->bits[1]);
  111. MD5Transform(ctx->buf, ctx->in);
  112. PUT_32BIT_LSB_FIRST(digest, ctx->buf[0]);
  113. PUT_32BIT_LSB_FIRST(digest + 4, ctx->buf[1]);
  114. PUT_32BIT_LSB_FIRST(digest + 8, ctx->buf[2]);
  115. PUT_32BIT_LSB_FIRST(digest + 12, ctx->buf[3]);
  116. memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
  117. }
  118. #ifndef ASM_MD5
  119. /* The four core functions - F1 is optimized somewhat */
  120. /* #define F1(x, y, z) (x & y | ~x & z) */
  121. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  122. #define F2(x, y, z) F1(z, x, y)
  123. #define F3(x, y, z) (x ^ y ^ z)
  124. #define F4(x, y, z) (y ^ (x | ~z))
  125. /* This is the central step in the MD5 algorithm. */
  126. #define MD5STEP(f, w, x, y, z, data, s) \
  127. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  128. /*
  129. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  130. * reflect the addition of 16 longwords of new data. MD5Update blocks
  131. * the data and converts bytes into longwords for this routine.
  132. */
  133. void MD5Transform(uint32 buf[4], const unsigned char inext[64])
  134. {
  135. register word32 a, b, c, d, i;
  136. word32 in[16];
  137. for (i = 0; i < 16; i++)
  138. in[i] = GET_32BIT_LSB_FIRST(inext + 4 * i);
  139. a = buf[0];
  140. b = buf[1];
  141. c = buf[2];
  142. d = buf[3];
  143. MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  144. MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  145. MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  146. MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  147. MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  148. MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  149. MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  150. MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  151. MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  152. MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  153. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  154. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  155. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  156. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  157. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  158. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  159. MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  160. MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  161. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  162. MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  163. MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  164. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  165. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  166. MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  167. MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  168. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  169. MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  170. MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  171. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  172. MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  173. MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  174. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  175. MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  176. MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  177. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  178. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  179. MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  180. MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  181. MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  182. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  183. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  184. MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  185. MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  186. MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  187. MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  188. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  189. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  190. MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
  191. MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  192. MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  193. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  194. MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  195. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  196. MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  197. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  198. MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  199. MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  200. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  201. MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  202. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  203. MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  204. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  205. MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  206. MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
  207. buf[0] += a;
  208. buf[1] += b;
  209. buf[2] += c;
  210. buf[3] += d;
  211. }
  212. #endif