millerrabin.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. /*
  2. * millerrabin.c: Miller-Rabin probabilistic primality testing, as
  3. * declared in sshkeygen.h.
  4. */
  5. #include <assert.h>
  6. #include "ssh.h"
  7. #include "sshkeygen.h"
  8. #include "mpint.h"
  9. #include "mpunsafe.h"
  10. /*
  11. * The Miller-Rabin primality test is an extension to the Fermat
  12. * test. The Fermat test just checks that a^(p-1) == 1 mod p; this
  13. * is vulnerable to Carmichael numbers. Miller-Rabin considers how
  14. * that 1 is derived as well.
  15. *
  16. * Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
  17. * or a == -1 (mod p).
  18. *
  19. * Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
  20. * since p is prime, either p divides (a+1) or p divides (a-1).
  21. * But this is the same as saying that either a is congruent to
  22. * -1 mod p or a is congruent to +1 mod p. []
  23. *
  24. * Comment: This fails when p is not prime. Consider p=mn, so
  25. * that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
  26. * and n dividing (a-1), without the whole of mn dividing either.
  27. * For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
  28. * 10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
  29. * without a having to be congruent to either 1 or -1.
  30. *
  31. * So the Miller-Rabin test, as well as considering a^(p-1),
  32. * considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
  33. * go. In other words. we write p-1 as q * 2^k, with k as large as
  34. * possible (i.e. q must be odd), and we consider the powers
  35. *
  36. * a^(q*2^0) a^(q*2^1) ... a^(q*2^(k-1)) a^(q*2^k)
  37. * i.e. a^((n-1)/2^k) a^((n-1)/2^(k-1)) ... a^((n-1)/2) a^(n-1)
  38. *
  39. * If p is to be prime, the last of these must be 1. Therefore, by
  40. * the above lemma, the one before it must be either 1 or -1. And
  41. * _if_ it's 1, then the one before that must be either 1 or -1,
  42. * and so on ... In other words, we expect to see a trailing chain
  43. * of 1s preceded by a -1. (If we're unlucky, our trailing chain of
  44. * 1s will be as long as the list so we'll never get to see what
  45. * lies before it. This doesn't count as a test failure because it
  46. * hasn't _proved_ that p is not prime.)
  47. *
  48. * For example, consider a=2 and p=1729. 1729 is a Carmichael
  49. * number: although it's not prime, it satisfies a^(p-1) == 1 mod p
  50. * for any a coprime to it. So the Fermat test wouldn't have a
  51. * problem with it at all, unless we happened to stumble on an a
  52. * which had a common factor.
  53. *
  54. * So. 1729 - 1 equals 27 * 2^6. So we look at
  55. *
  56. * 2^27 mod 1729 == 645
  57. * 2^108 mod 1729 == 1065
  58. * 2^216 mod 1729 == 1
  59. * 2^432 mod 1729 == 1
  60. * 2^864 mod 1729 == 1
  61. * 2^1728 mod 1729 == 1
  62. *
  63. * We do have a trailing string of 1s, so the Fermat test would
  64. * have been happy. But this trailing string of 1s is preceded by
  65. * 1065; whereas if 1729 were prime, we'd expect to see it preceded
  66. * by -1 (i.e. 1728.). Guards! Seize this impostor.
  67. *
  68. * (If we were unlucky, we might have tried a=16 instead of a=2;
  69. * now 16^27 mod 1729 == 1, so we would have seen a long string of
  70. * 1s and wouldn't have seen the thing _before_ the 1s. So, just
  71. * like the Fermat test, for a given p there may well exist values
  72. * of a which fail to show up its compositeness. So we try several,
  73. * just like the Fermat test. The difference is that Miller-Rabin
  74. * is not _in general_ fooled by Carmichael numbers.)
  75. *
  76. * Put simply, then, the Miller-Rabin test requires us to:
  77. *
  78. * 1. write p-1 as q * 2^k, with q odd
  79. * 2. compute z = (a^q) mod p.
  80. * 3. report success if z == 1 or z == -1.
  81. * 4. square z at most k-1 times, and report success if it becomes
  82. * -1 at any point.
  83. * 5. report failure otherwise.
  84. *
  85. * (We expect z to become -1 after at most k-1 squarings, because
  86. * if it became -1 after k squarings then a^(p-1) would fail to be
  87. * 1. And we don't need to investigate what happens after we see a
  88. * -1, because we _know_ that -1 squared is 1 modulo anything at
  89. * all, so after we've seen a -1 we can be sure of seeing nothing
  90. * but 1s.)
  91. */
  92. struct MillerRabin {
  93. MontyContext *mc;
  94. size_t k;
  95. mp_int *q;
  96. mp_int *two, *pm1, *m_pm1;
  97. };
  98. MillerRabin *miller_rabin_new(mp_int *p)
  99. {
  100. MillerRabin *mr = snew(MillerRabin);
  101. assert(mp_hs_integer(p, 2));
  102. assert(mp_get_bit(p, 0) == 1);
  103. mr->k = 1;
  104. while (!mp_get_bit(p, mr->k))
  105. mr->k++;
  106. mr->q = mp_rshift_safe(p, mr->k);
  107. mr->two = mp_from_integer(2);
  108. mr->pm1 = mp_unsafe_copy(p);
  109. mp_sub_integer_into(mr->pm1, mr->pm1, 1);
  110. mr->mc = monty_new(p);
  111. mr->m_pm1 = monty_import(mr->mc, mr->pm1);
  112. return mr;
  113. }
  114. void miller_rabin_free(MillerRabin *mr)
  115. {
  116. mp_free(mr->q);
  117. mp_free(mr->two);
  118. mp_free(mr->pm1);
  119. mp_free(mr->m_pm1);
  120. monty_free(mr->mc);
  121. smemclr(mr, sizeof(*mr));
  122. sfree(mr);
  123. }
  124. struct mr_result {
  125. bool passed;
  126. bool potential_primitive_root;
  127. };
  128. static struct mr_result miller_rabin_test_inner(MillerRabin *mr, mp_int *w)
  129. {
  130. /*
  131. * Compute w^q mod p.
  132. */
  133. mp_int *wqp = monty_pow(mr->mc, w, mr->q);
  134. /*
  135. * See if this is 1, or if it is -1, or if it becomes -1
  136. * when squared at most k-1 times.
  137. */
  138. struct mr_result result;
  139. result.passed = false;
  140. result.potential_primitive_root = false;
  141. if (mp_cmp_eq(wqp, monty_identity(mr->mc))) {
  142. result.passed = true;
  143. } else {
  144. for (size_t i = 0; i < mr->k; i++) {
  145. if (mp_cmp_eq(wqp, mr->m_pm1)) {
  146. result.passed = true;
  147. result.potential_primitive_root = (i == mr->k - 1);
  148. break;
  149. }
  150. if (i == mr->k - 1)
  151. break;
  152. monty_mul_into(mr->mc, wqp, wqp, wqp);
  153. }
  154. }
  155. mp_free(wqp);
  156. return result;
  157. }
  158. bool miller_rabin_test_random(MillerRabin *mr)
  159. {
  160. mp_int *mw = mp_random_in_range(mr->two, mr->pm1);
  161. struct mr_result result = miller_rabin_test_inner(mr, mw);
  162. mp_free(mw);
  163. return result.passed;
  164. }
  165. mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr)
  166. {
  167. while (true) {
  168. mp_int *mw = mp_unsafe_shrink(mp_random_in_range(mr->two, mr->pm1));
  169. struct mr_result result = miller_rabin_test_inner(mr, mw);
  170. if (result.passed && result.potential_primitive_root) {
  171. mp_int *pr = monty_export(mr->mc, mw);
  172. mp_free(mw);
  173. return pr;
  174. }
  175. mp_free(mw);
  176. if (!result.passed) {
  177. return NULL;
  178. }
  179. }
  180. }
  181. unsigned miller_rabin_checks_needed(unsigned bits)
  182. {
  183. /* Table 4.4 from Handbook of Applied Cryptography */
  184. return (bits >= 1300 ? 2 : bits >= 850 ? 3 : bits >= 650 ? 4 :
  185. bits >= 550 ? 5 : bits >= 450 ? 6 : bits >= 400 ? 7 :
  186. bits >= 350 ? 8 : bits >= 300 ? 9 : bits >= 250 ? 12 :
  187. bits >= 200 ? 15 : bits >= 150 ? 18 : 27);
  188. }