1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051 |
- /**
- * meshoptimizer - version 0.17
- *
- * Copyright (C) 2016-2021, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
- * Report bugs and download new versions at https://github.com/zeux/meshoptimizer
- *
- * This library is distributed under the MIT License. See notice at the end of this file.
- */
- #pragma once
- #include <assert.h>
- #include <stddef.h>
- /* Version macro; major * 1000 + minor * 10 + patch */
- #define MESHOPTIMIZER_VERSION 170 /* 0.17 */
- /* If no API is defined, assume default */
- #ifndef MESHOPTIMIZER_API
- #define MESHOPTIMIZER_API
- #endif
- /* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */
- #define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API
- /* C interface */
- #ifdef __cplusplus
- extern "C" {
- #endif
- /**
- * Vertex attribute stream, similar to glVertexPointer
- * Each element takes size bytes, with stride controlling the spacing between successive elements.
- */
- struct meshopt_Stream
- {
- const void* data;
- size_t size;
- size_t stride;
- };
- /**
- * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices
- * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
- * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
- * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
- *
- * destination must contain enough space for the resulting remap table (vertex_count elements)
- * indices can be NULL if the input is unindexed
- */
- MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
- /**
- * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices
- * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
- * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
- * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream.
- * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
- *
- * destination must contain enough space for the resulting remap table (vertex_count elements)
- * indices can be NULL if the input is unindexed
- */
- MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
- /**
- * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap
- *
- * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap)
- * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap
- */
- MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap);
- /**
- * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- * indices can be NULL if the input is unindexed
- */
- MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap);
- /**
- * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
- * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer.
- * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
- * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- */
- MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);
- /**
- * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
- * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer.
- * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
- * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- */
- MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
- /**
- * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology
- * Each triangle is converted into a 6-vertex patch with the following layout:
- * - 0, 2, 4: original triangle vertices
- * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40
- * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY.
- * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering.
- *
- * destination must contain enough space for the resulting index buffer (index_count*2 elements)
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- */
- MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement
- * Each triangle is converted into a 12-vertex patch with the following layout:
- * - 0, 1, 2: original triangle vertices
- * - 3, 4: opposing edge for edge 0, 1
- * - 5, 6: opposing edge for edge 1, 2
- * - 7, 8: opposing edge for edge 2, 0
- * - 9, 10, 11: dominant vertices for corners 0, 1, 2
- * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping.
- * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details.
- *
- * destination must contain enough space for the resulting index buffer (index_count*4 elements)
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- */
- MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Vertex transform cache optimizer
- * Reorders indices to reduce the number of GPU vertex shader invocations
- * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- */
- MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
- /**
- * Vertex transform cache optimizer for strip-like caches
- * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective
- * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- */
- MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
- /**
- * Vertex transform cache optimizer for FIFO caches
- * Reorders indices to reduce the number of GPU vertex shader invocations
- * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache
- * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- * cache_size should be less than the actual GPU cache size to avoid cache thrashing
- */
- MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);
- /**
- * Overdraw optimizer
- * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw
- * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!)
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently
- */
- MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);
- /**
- * Vertex fetch cache optimizer
- * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing
- * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
- * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream.
- *
- * destination must contain enough space for the resulting vertex buffer (vertex_count elements)
- * indices is used both as an input and as an output index buffer
- */
- MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
- /**
- * Vertex fetch cache optimizer
- * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing
- * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
- * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer
- *
- * destination must contain enough space for the resulting remap table (vertex_count elements)
- */
- MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
- /**
- * Index buffer encoder
- * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original.
- * Input index buffer must represent a triangle list.
- * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
- * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first.
- *
- * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size)
- */
- MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
- MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count);
- /**
- * Set index encoder format version
- * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+)
- */
- MESHOPTIMIZER_API void meshopt_encodeIndexVersion(int version);
- /**
- * Index buffer decoder
- * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer
- * Returns 0 if decoding was successful, and an error code otherwise
- * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- */
- MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);
- /**
- * Index sequence encoder
- * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original.
- * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better.
- * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
- *
- * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size)
- */
- MESHOPTIMIZER_API size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
- MESHOPTIMIZER_API size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count);
- /**
- * Index sequence decoder
- * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence
- * Returns 0 if decoding was successful, and an error code otherwise
- * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
- *
- * destination must contain enough space for the resulting index sequence (index_count elements)
- */
- MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);
- /**
- * Vertex buffer encoder
- * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original.
- * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
- * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream.
- * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized.
- *
- * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size)
- */
- MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size);
- MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size);
- /**
- * Set vertex encoder format version
- * version must specify the data format version to encode; valid values are 0 (decodable by all library versions)
- */
- MESHOPTIMIZER_API void meshopt_encodeVertexVersion(int version);
- /**
- * Vertex buffer decoder
- * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer
- * Returns 0 if decoding was successful, and an error code otherwise
- * The decoder is safe to use for untrusted input, but it may produce garbage data.
- *
- * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes)
- */
- MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size);
- /**
- * Vertex buffer filters
- * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place.
- *
- * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f.
- * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
- *
- * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct.
- * Each component is stored as an 16-bit integer; stride must be equal to 8.
- *
- * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M.
- * Each 32-bit component is decoded in isolation; stride must be divisible by 4.
- */
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride);
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride);
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride);
- /**
- * Vertex buffer filter encoders
- * These functions can be used to encode data in a format that meshopt_decodeFilter can decode
- *
- * meshopt_encodeFilterOct encodes unit vectors with K-bit (K <= 16) signed X/Y as an output.
- * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
- * Input data must contain 4 floats for every vector (count*4 total).
- *
- * meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding.
- * Each component is stored as an 16-bit integer; stride must be equal to 8.
- * Input data must contain 4 floats for every quaternion (count*4 total).
- *
- * meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24).
- * Mantissa is shared between all components of a given vector as defined by stride; stride must be divisible by 4.
- * Input data must contain stride/4 floats for every vector (count*stride/4 total).
- * When individual (scalar) encoding is desired, simply pass stride=4 and adjust count accordingly.
- */
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data);
- /**
- * Experimental: Mesh simplifier
- * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
- * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
- * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification.
- * Returns the number of indices after simplification, with destination containing new index data
- * The resulting index buffer references vertices from the original vertex buffer.
- * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
- *
- * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation
- * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
- */
- MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error);
- /**
- * Experimental: Mesh simplifier (sloppy)
- * Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance
- * The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error.
- * Returns the number of indices after simplification, with destination containing new index data
- * The resulting index buffer references vertices from the original vertex buffer.
- * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
- *
- * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation
- * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
- */
- MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error);
- /**
- * Experimental: Point cloud simplifier
- * Reduces the number of points in the cloud to reach the given target
- * Returns the number of points after simplification, with destination containing new index data
- * The resulting index buffer references vertices from the original vertex buffer.
- * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
- *
- * destination must contain enough space for the target index buffer (target_vertex_count elements)
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- */
- MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count);
- /**
- * Experimental: Returns the error scaling factor used by the simplifier to convert between absolute and relative extents
- *
- * Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error
- * Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error.
- */
- MESHOPTIMIZER_EXPERIMENTAL float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Mesh stripifier
- * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles
- * Returns the number of indices in the resulting strip, with destination containing new index data
- * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
- * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance.
- *
- * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound
- * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles
- */
- MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index);
- MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count);
- /**
- * Mesh unstripifier
- * Converts a triangle strip to a triangle list
- * Returns the number of indices in the resulting list, with destination containing new index data
- *
- * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound
- */
- MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index);
- MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count);
- struct meshopt_VertexCacheStatistics
- {
- unsigned int vertices_transformed;
- unsigned int warps_executed;
- float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */
- float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */
- };
- /**
- * Vertex transform cache analyzer
- * Returns cache hit statistics using a simplified FIFO model
- * Results may not match actual GPU performance
- */
- MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size);
- struct meshopt_OverdrawStatistics
- {
- unsigned int pixels_covered;
- unsigned int pixels_shaded;
- float overdraw; /* shaded pixels / covered pixels; best case 1.0 */
- };
- /**
- * Overdraw analyzer
- * Returns overdraw statistics using a software rasterizer
- * Results may not match actual GPU performance
- *
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- */
- MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- struct meshopt_VertexFetchStatistics
- {
- unsigned int bytes_fetched;
- float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */
- };
- /**
- * Vertex fetch cache analyzer
- * Returns cache hit statistics using a simplified direct mapped model
- * Results may not match actual GPU performance
- */
- MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
- struct meshopt_Meshlet
- {
- /* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
- unsigned int vertex_offset;
- unsigned int triangle_offset;
- /* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */
- unsigned int vertex_count;
- unsigned int triangle_count;
- };
- /**
- * Meshlet builder
- * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
- * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
- * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
- * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
- *
- * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
- * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices
- * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512)
- * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
- */
- MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
- MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
- MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
- struct meshopt_Bounds
- {
- /* bounding sphere, useful for frustum and occlusion culling */
- float center[3];
- float radius;
- /* normal cone, useful for backface culling */
- float cone_apex[3];
- float cone_axis[3];
- float cone_cutoff; /* = cos(angle/2) */
- /* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */
- signed char cone_axis_s8[3];
- signed char cone_cutoff_s8;
- };
- /**
- * Cluster bounds generator
- * Creates bounding volumes that can be used for frustum, backface and occlusion culling.
- *
- * For backface culling with orthographic projection, use the following formula to reject backfacing clusters:
- * dot(view, cone_axis) >= cone_cutoff
- *
- * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff:
- * dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff
- *
- * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead:
- * dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position)
- * or an equivalent formula that doesn't have a singularity at center = camera_position:
- * dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius
- *
- * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere
- * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
- *
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
- */
- MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Experimental: Spatial sorter
- * Generates a remap table that can be used to reorder points for spatial locality.
- * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer.
- *
- * destination must contain enough space for the resulting remap table (vertex_count elements)
- */
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Experimental: Spatial sorter
- * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache.
- *
- * destination must contain enough space for the resulting index buffer (index_count elements)
- * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- */
- MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- /**
- * Set allocation callbacks
- * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library.
- * Note that all algorithms only allocate memory for temporary use.
- * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first.
- */
- MESHOPTIMIZER_API void meshopt_setAllocator(void* (*allocate)(size_t), void (*deallocate)(void*));
- #ifdef __cplusplus
- } /* extern "C" */
- #endif
- /* Quantization into commonly supported data formats */
- #ifdef __cplusplus
- /**
- * Quantize a float in [0..1] range into an N-bit fixed point unorm value
- * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion
- * Maximum reconstruction error: 1/2^(N+1)
- */
- inline int meshopt_quantizeUnorm(float v, int N);
- /**
- * Quantize a float in [-1..1] range into an N-bit fixed point snorm value
- * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions)
- * Maximum reconstruction error: 1/2^N
- */
- inline int meshopt_quantizeSnorm(float v, int N);
- /**
- * Quantize a float into half-precision floating point value
- * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
- * Representable magnitude range: [6e-5; 65504]
- * Maximum relative reconstruction error: 5e-4
- */
- inline unsigned short meshopt_quantizeHalf(float v);
- /**
- * Quantize a float into a floating point value with a limited number of significant mantissa bits
- * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
- * Assumes N is in a valid mantissa precision range, which is 1..23
- */
- inline float meshopt_quantizeFloat(float v, int N);
- #endif
- /**
- * C++ template interface
- *
- * These functions mirror the C interface the library provides, providing template-based overloads so that
- * the caller can use an arbitrary type for the index data, both for input and output.
- * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not,
- * the wrappers end up allocating memory and copying index data to convert from one type to another.
- */
- #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
- template <typename T>
- inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
- template <typename T>
- inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
- template <typename T>
- inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap);
- template <typename T>
- inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);
- template <typename T>
- inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
- template <typename T>
- inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- template <typename T>
- inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- template <typename T>
- inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
- template <typename T>
- inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
- template <typename T>
- inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);
- template <typename T>
- inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);
- template <typename T>
- inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count);
- template <typename T>
- inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
- template <typename T>
- inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
- template <typename T>
- inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
- template <typename T>
- inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
- template <typename T>
- inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
- template <typename T>
- inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0);
- template <typename T>
- inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0);
- template <typename T>
- inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index);
- template <typename T>
- inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index);
- template <typename T>
- inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size);
- template <typename T>
- inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- template <typename T>
- inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
- template <typename T>
- inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
- template <typename T>
- inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
- template <typename T>
- inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- template <typename T>
- inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
- #endif
- /* Inline implementation */
- #ifdef __cplusplus
- inline int meshopt_quantizeUnorm(float v, int N)
- {
- const float scale = float((1 << N) - 1);
- v = (v >= 0) ? v : 0;
- v = (v <= 1) ? v : 1;
- return int(v * scale + 0.5f);
- }
- inline int meshopt_quantizeSnorm(float v, int N)
- {
- const float scale = float((1 << (N - 1)) - 1);
- float round = (v >= 0 ? 0.5f : -0.5f);
- v = (v >= -1) ? v : -1;
- v = (v <= +1) ? v : +1;
- return int(v * scale + round);
- }
- inline unsigned short meshopt_quantizeHalf(float v)
- {
- union { float f; unsigned int ui; } u = {v};
- unsigned int ui = u.ui;
- int s = (ui >> 16) & 0x8000;
- int em = ui & 0x7fffffff;
- /* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */
- int h = (em - (112 << 23) + (1 << 12)) >> 13;
- /* underflow: flush to zero; 113 encodes exponent -14 */
- h = (em < (113 << 23)) ? 0 : h;
- /* overflow: infinity; 143 encodes exponent 16 */
- h = (em >= (143 << 23)) ? 0x7c00 : h;
- /* NaN; note that we convert all types of NaN to qNaN */
- h = (em > (255 << 23)) ? 0x7e00 : h;
- return (unsigned short)(s | h);
- }
- inline float meshopt_quantizeFloat(float v, int N)
- {
- union { float f; unsigned int ui; } u = {v};
- unsigned int ui = u.ui;
- const int mask = (1 << (23 - N)) - 1;
- const int round = (1 << (23 - N)) >> 1;
- int e = ui & 0x7f800000;
- unsigned int rui = (ui + round) & ~mask;
- /* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */
- ui = e == 0x7f800000 ? ui : rui;
- /* flush denormals to zero */
- ui = e == 0 ? 0 : ui;
- u.ui = ui;
- return u.f;
- }
- #endif
- /* Internal implementation helpers */
- #ifdef __cplusplus
- class meshopt_Allocator
- {
- public:
- template <typename T>
- struct StorageT
- {
- static void* (*allocate)(size_t);
- static void (*deallocate)(void*);
- };
- typedef StorageT<void> Storage;
- meshopt_Allocator()
- : blocks()
- , count(0)
- {
- }
- ~meshopt_Allocator()
- {
- for (size_t i = count; i > 0; --i)
- Storage::deallocate(blocks[i - 1]);
- }
- template <typename T> T* allocate(size_t size)
- {
- assert(count < sizeof(blocks) / sizeof(blocks[0]));
- T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T)));
- blocks[count++] = result;
- return result;
- }
- private:
- void* blocks[24];
- size_t count;
- };
- // This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker
- template <typename T> void* (*meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new;
- template <typename T> void (*meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete;
- #endif
- /* Inline implementation for C++ templated wrappers */
- #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
- template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)>
- struct meshopt_IndexAdapter;
- template <typename T>
- struct meshopt_IndexAdapter<T, false>
- {
- T* result;
- unsigned int* data;
- size_t count;
- meshopt_IndexAdapter(T* result_, const T* input, size_t count_)
- : result(result_)
- , data(0)
- , count(count_)
- {
- size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int);
- data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size));
- if (input)
- {
- for (size_t i = 0; i < count; ++i)
- data[i] = input[i];
- }
- }
- ~meshopt_IndexAdapter()
- {
- if (result)
- {
- for (size_t i = 0; i < count; ++i)
- result[i] = T(data[i]);
- }
- meshopt_Allocator::Storage::deallocate(data);
- }
- };
- template <typename T>
- struct meshopt_IndexAdapter<T, true>
- {
- unsigned int* data;
- meshopt_IndexAdapter(T* result, const T* input, size_t)
- : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input)))
- {
- }
- };
- template <typename T>
- inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
- {
- meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
- return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size);
- }
- template <typename T>
- inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
- return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count);
- }
- template <typename T>
- inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap)
- {
- meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap);
- }
- template <typename T>
- inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride);
- }
- template <typename T>
- inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
- }
- template <typename T>
- inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count * 2);
- meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- }
- template <typename T>
- inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count * 4);
- meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- }
- template <typename T>
- inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count);
- }
- template <typename T>
- inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count);
- }
- template <typename T>
- inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size);
- }
- template <typename T>
- inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold);
- }
- template <typename T>
- inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count);
- }
- template <typename T>
- inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
- {
- meshopt_IndexAdapter<T> inout(indices, indices, index_count);
- return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size);
- }
- template <typename T>
- inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count);
- }
- template <typename T>
- inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
- {
- char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
- (void)index_size_valid;
- return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size);
- }
- template <typename T>
- inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count);
- }
- template <typename T>
- inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
- {
- char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
- (void)index_size_valid;
- return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size);
- }
- template <typename T>
- inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error);
- }
- template <typename T>
- inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error);
- }
- template <typename T>
- inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5);
- return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index));
- }
- template <typename T>
- inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3);
- return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index));
- }
- template <typename T>
- inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size);
- }
- template <typename T>
- inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- }
- template <typename T>
- inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size);
- }
- template <typename T>
- inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
- }
- template <typename T>
- inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
- }
- template <typename T>
- inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- }
- template <typename T>
- inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- meshopt_IndexAdapter<T> in(0, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, 0, index_count);
- meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- }
- #endif
- /**
- * Copyright (c) 2016-2021 Arseny Kapoulkine
- *
- * Permission is hereby granted, free of charge, to any person
- * obtaining a copy of this software and associated documentation
- * files (the "Software"), to deal in the Software without
- * restriction, including without limitation the rights to use,
- * copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
- * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
- * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- */
|