12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #ifndef IRR_MATRIX_H_INCLUDED
- #define IRR_MATRIX_H_INCLUDED
- #include "irrMath.h"
- #include "vector3d.h"
- #include "vector2d.h"
- #include "plane3d.h"
- #include "aabbox3d.h"
- #include "rect.h"
- #include "irrString.h"
- // enable this to keep track of changes to the matrix
- // and make simpler identity check for seldom changing matrices
- // otherwise identity check will always compare the elements
- //#define USE_MATRIX_TEST
- // this is only for debugging purposes
- //#define USE_MATRIX_TEST_DEBUG
- #if defined( USE_MATRIX_TEST_DEBUG )
- struct MatrixTest
- {
- MatrixTest () : ID(0), Calls(0) {}
- char buf[256];
- int Calls;
- int ID;
- };
- static MatrixTest MTest;
- #endif
- namespace irr
- {
- namespace core
- {
- //! 4x4 matrix. Mostly used as transformation matrix for 3d calculations.
- /** The matrix is a D3D style matrix, row major with translations in the 4th row. */
- template <class T>
- class CMatrix4
- {
- public:
- //! Constructor Flags
- enum eConstructor
- {
- EM4CONST_NOTHING = 0,
- EM4CONST_COPY,
- EM4CONST_IDENTITY,
- EM4CONST_TRANSPOSED,
- EM4CONST_INVERSE,
- EM4CONST_INVERSE_TRANSPOSED
- };
- //! Default constructor
- /** \param constructor Choose the initialization style */
- CMatrix4( eConstructor constructor = EM4CONST_IDENTITY );
- //! Constructor with value initialization
- CMatrix4(const T& r0c0, const T& r0c1, const T& r0c2, const T& r0c3,
- const T& r1c0, const T& r1c1, const T& r1c2, const T& r1c3,
- const T& r2c0, const T& r2c1, const T& r2c2, const T& r2c3,
- const T& r3c0, const T& r3c1, const T& r3c2, const T& r3c3)
- {
- M[0] = r0c0; M[1] = r0c1; M[2] = r0c2; M[3] = r0c3;
- M[4] = r1c0; M[5] = r1c1; M[6] = r1c2; M[7] = r1c3;
- M[8] = r2c0; M[9] = r2c1; M[10] = r2c2; M[11] = r2c3;
- M[12] = r3c0; M[13] = r3c1; M[14] = r3c2; M[15] = r3c3;
- }
- //! Copy constructor
- /** \param other Other matrix to copy from
- \param constructor Choose the initialization style */
- CMatrix4(const CMatrix4<T>& other, eConstructor constructor = EM4CONST_COPY);
- //! Simple operator for directly accessing every element of the matrix.
- T& operator()(const s32 row, const s32 col)
- {
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return M[ row * 4 + col ];
- }
- //! Simple operator for directly accessing every element of the matrix.
- const T& operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; }
- //! Simple operator for linearly accessing every element of the matrix.
- T& operator[](u32 index)
- {
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return M[index];
- }
- //! Simple operator for linearly accessing every element of the matrix.
- const T& operator[](u32 index) const { return M[index]; }
- //! Sets this matrix equal to the other matrix.
- inline CMatrix4<T>& operator=(const CMatrix4<T> &other);
- //! Sets all elements of this matrix to the value.
- inline CMatrix4<T>& operator=(const T& scalar);
- //! Returns pointer to internal array
- const T* pointer() const { return M; }
- T* pointer()
- {
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return M;
- }
- //! Returns true if other matrix is equal to this matrix.
- bool operator==(const CMatrix4<T> &other) const;
- //! Returns true if other matrix is not equal to this matrix.
- bool operator!=(const CMatrix4<T> &other) const;
- //! Add another matrix.
- CMatrix4<T> operator+(const CMatrix4<T>& other) const;
- //! Add another matrix.
- CMatrix4<T>& operator+=(const CMatrix4<T>& other);
- //! Subtract another matrix.
- CMatrix4<T> operator-(const CMatrix4<T>& other) const;
- //! Subtract another matrix.
- CMatrix4<T>& operator-=(const CMatrix4<T>& other);
- //! set this matrix to the product of two matrices
- /** Calculate b*a */
- inline CMatrix4<T>& setbyproduct(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b );
- //! Set this matrix to the product of two matrices
- /** Calculate b*a, no optimization used,
- use it if you know you never have an identity matrix */
- CMatrix4<T>& setbyproduct_nocheck(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b );
- //! Multiply by another matrix.
- /** Calculate other*this */
- CMatrix4<T> operator*(const CMatrix4<T>& other) const;
- //! Multiply by another matrix.
- /** Like calling: (*this) = (*this) * other
- */
- CMatrix4<T>& operator*=(const CMatrix4<T>& other);
- //! Multiply by scalar.
- CMatrix4<T> operator*(const T& scalar) const;
- //! Multiply by scalar.
- CMatrix4<T>& operator*=(const T& scalar);
- //! Set matrix to identity.
- inline CMatrix4<T>& makeIdentity();
- //! Returns true if the matrix is the identity matrix
- inline bool isIdentity() const;
- //! Returns true if the matrix is orthogonal
- inline bool isOrthogonal() const;
- //! Returns true if the matrix is the identity matrix
- bool isIdentity_integer_base () const;
- //! Set the translation of the current matrix. Will erase any previous values.
- CMatrix4<T>& setTranslation( const vector3d<T>& translation );
- //! Gets the current translation
- vector3d<T> getTranslation() const;
- //! Set the inverse translation of the current matrix. Will erase any previous values.
- CMatrix4<T>& setInverseTranslation( const vector3d<T>& translation );
- //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
- inline CMatrix4<T>& setRotationRadians( const vector3d<T>& rotation );
- //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
- CMatrix4<T>& setRotationDegrees( const vector3d<T>& rotation );
- //! Get the rotation, as set by setRotation() when you already know the scale used to create the matrix
- /** NOTE: The scale needs to be the correct one used to create this matrix.
- You can _not_ use the result of getScale(), but have to save your scale
- variable in another place (like ISceneNode does).
- NOTE: No scale value can be 0 or the result is undefined.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- NOTE: It will (usually) give wrong results when further transformations have been added in the matrix (like shear).
- WARNING: There have been troubles with this function over the years and we may still have missed some corner cases.
- It's generally safer to keep the rotation and scale you used to create the matrix around and work with those.
- */
- core::vector3d<T> getRotationDegrees(const vector3d<T>& scale) const;
- //! Returns the rotation, as set by setRotation().
- /** NOTE: You will have the same end-rotation as used in setRotation, but it might not use the same axis values.
- NOTE: This only works correct if no other matrix operations have been done on the inner 3x3 matrix besides
- setting rotation (so no scale/shear). Thought it (probably) works as long as scale doesn't flip handedness.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- */
- core::vector3d<T> getRotationDegrees() const;
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T>& setInverseRotationRadians( const vector3d<T>& rotation );
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T>& setInverseRotationDegrees( const vector3d<T>& rotation );
- //! Make a rotation matrix from angle and axis, assuming left handed rotation.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T>& setRotationAxisRadians(const T& angle, const vector3d<T>& axis);
- //! Set Scale
- CMatrix4<T>& setScale( const vector3d<T>& scale );
- //! Set Scale
- CMatrix4<T>& setScale( const T scale ) { return setScale(core::vector3d<T>(scale,scale,scale)); }
- //! Get Scale
- core::vector3d<T> getScale() const;
- //! Translate a vector by the inverse of the translation part of this matrix.
- void inverseTranslateVect( vector3df& vect ) const;
- //! Transform (rotate/scale) a vector by the inverse of the rotation part this matrix
- void inverseRotateVect( vector3df& vect ) const;
- //! Transform (rotate/scale) a vector by the rotation part of this matrix.
- void rotateVect( vector3df& vect ) const;
- //! An alternate transform vector method, writing into a second vector
- void rotateVect(core::vector3df& out, const core::vector3df& in) const;
- //! An alternate transform vector method, writing into an array of 3 floats
- void rotateVect(T *out,const core::vector3df &in) const;
- //! Transforms the vector by this matrix
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void transformVect( vector3df& vect) const;
- //! Transforms input vector by this matrix and stores result in output vector
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void transformVect( vector3df& out, const vector3df& in ) const;
- //! An alternate transform vector method, writing into an array of 4 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1.
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVect(T *out,const core::vector3df &in) const;
- //! An alternate transform vector method, reading from and writing to an array of 3 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVec3(T *out, const T * in) const;
- //! An alternate transform vector method, reading from and writing to an array of 4 floats
- void transformVec4(T *out, const T * in) const;
- //! Translate a vector by the translation part of this matrix.
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void translateVect( vector3df& vect ) const;
- //! Transforms a plane by this matrix
- void transformPlane( core::plane3d<f32> &plane) const;
- //! Transforms a plane by this matrix
- void transformPlane( const core::plane3d<f32> &in, core::plane3d<f32> &out) const;
- //! Transforms a axis aligned bounding box
- /** The result box of this operation may not be accurate at all. For
- correct results, use transformBoxEx() */
- void transformBox(core::aabbox3d<f32>& box) const;
- //! Transforms a axis aligned bounding box
- /** The result box of this operation should be accurate, but this operation
- is slower than transformBox(). */
- void transformBoxEx(core::aabbox3d<f32>& box) const;
- //! Multiplies this matrix by a 1x4 matrix
- void multiplyWith1x4Matrix(T* matrix) const;
- //! Calculates inverse of matrix. Slow.
- /** \return Returns false if there is no inverse matrix.*/
- bool makeInverse();
- //! Inverts a primitive matrix which only contains a translation and a rotation
- /** \param out: where result matrix is written to. */
- bool getInversePrimitive ( CMatrix4<T>& out ) const;
- //! Gets the inverse matrix of this one
- /** \param out: where result matrix is written to.
- \return Returns false if there is no inverse matrix. */
- bool getInverse(CMatrix4<T>& out) const;
- //! Tool function to build a perspective projection matrix
- /** Mainly for use of the other perspective projection build functions.
- But can also be used by users (can be useful if you don't work with matrices with T=f32).
- \param sx: x scale factor (depth/half_width from clipped frustum planes parallel to the camera)
- \param sy: y scale factor (depth/half_height from clipped frustum planes parallel to the camera)
- \param zNear: Distance to near plane
- \param zFar: Distance to far plane
- param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style)
- \param zSign: 1 for left-handed projection matrix, -1 for right-handed projection matrix
- \param shiftX: Shift projection plane of camera left/right
- \param shiftY: Shift projection plane of camera up/down */
- CMatrix4<T>& buildProjectionMatrixPerspectiveFov(T sx, T sy, T zNear, T zFar, bool zClipFromZero, T zSign, T shiftX, T shiftY);
- //! Builds a right-handed perspective projection matrix based on a field of view
- //\param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style).
- CMatrix4<T>& buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true, f32 shiftX=0.f, f32 shiftY=0.f);
- //! Builds a left-handed perspective projection matrix based on a field of view
- CMatrix4<T>& buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true, f32 shiftX=0.f, f32 shiftY=0.f);
- //! Builds a left-handed perspective projection matrix based on a field of view, with far plane at infinity
- CMatrix4<T>& buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 epsilon=0);
- //! Builds a right-handed perspective projection matrix.
- CMatrix4<T>& buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true, f32 shiftX=0.f, f32 shiftY=0.f);
- //! Builds a left-handed perspective projection matrix.
- //\param widthOfViewVolume: width of clipped near frustum plane
- //\param heightOfViewVolume: height of clipped near frustum plane
- CMatrix4<T>& buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true, f32 shiftX=0.f, f32 shiftY=0.f);
- //! Builds a left-handed orthogonal projection matrix.
- //\param zClipFromZero: Clipping of z can be projected from 0 to 1 when true (D3D style) and from -1 to 1 when false (OGL style).
- CMatrix4<T>& buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true);
- //! Builds a right-handed orthogonal projection matrix.
- CMatrix4<T>& buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true);
- //! Builds a left-handed look-at matrix.
- CMatrix4<T>& buildCameraLookAtMatrixLH(
- const vector3df& position,
- const vector3df& target,
- const vector3df& upVector);
- //! Builds a right-handed look-at matrix.
- CMatrix4<T>& buildCameraLookAtMatrixRH(
- const vector3df& position,
- const vector3df& target,
- const vector3df& upVector);
- //! Builds a matrix that flattens geometry into a plane.
- /** \param light: light source
- \param plane: plane into which the geometry if flattened into
- \param point: value between 0 and 1, describing the light source.
- If this is 1, it is a point light, if it is 0, it is a directional light. */
- CMatrix4<T>& buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point=1.0f);
- //! Builds a matrix which transforms a normalized Device Coordinate to Device Coordinates.
- /** Used to scale <-1,-1><1,1> to viewport, for example from <-1,-1> <1,1> to the viewport <0,0><0,640> */
- CMatrix4<T>& buildNDCToDCMatrix( const core::rect<s32>& area, f32 zScale);
- //! Creates a new matrix as interpolated matrix from two other ones.
- /** \param b: other matrix to interpolate with
- \param time: Must be a value between 0 and 1. */
- CMatrix4<T> interpolate(const core::CMatrix4<T>& b, f32 time) const;
- //! Gets transposed matrix
- CMatrix4<T> getTransposed() const;
- //! Gets transposed matrix
- inline void getTransposed( CMatrix4<T>& dest ) const;
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- */
- CMatrix4<T>& buildRotateFromTo(const core::vector3df& from, const core::vector3df& to);
- //! Builds a combined matrix which translates to a center before rotation and translates from origin afterwards
- /** \param center Position to rotate around
- \param translate Translation applied after the rotation
- */
- void setRotationCenter(const core::vector3df& center, const core::vector3df& translate);
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coo
- \param center: object position in world-coo and rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- void buildAxisAlignedBillboard(const core::vector3df& camPos,
- const core::vector3df& center,
- const core::vector3df& translation,
- const core::vector3df& axis,
- const core::vector3df& from);
- /*
- construct 2D Texture transformations
- rotate about center, scale, and transform.
- */
- //! Set to a texture transformation matrix with the given parameters.
- CMatrix4<T>& buildTextureTransform( f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale);
- //! Set texture transformation rotation
- /** Rotate about z axis, recenter at (0.5,0.5).
- Doesn't clear other elements than those affected
- \param radAngle Angle in radians
- \return Altered matrix */
- CMatrix4<T>& setTextureRotationCenter( f32 radAngle );
- //! Set texture transformation translation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T>& setTextureTranslate( f32 x, f32 y );
- //! Get texture transformation translation
- /** \param x returns offset on x axis
- \param y returns offset on y axis */
- void getTextureTranslate( f32& x, f32& y ) const;
- //! Set texture transformation translation, using a transposed representation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T>& setTextureTranslateTransposed( f32 x, f32 y );
- //! Set texture transformation scale
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T>& setTextureScale( f32 sx, f32 sy );
- //! Get texture transformation scale
- /** \param sx Returns x axis scale factor
- \param sy Returns y axis scale factor */
- void getTextureScale( f32& sx, f32& sy ) const;
- //! Set texture transformation scale, and recenter at (0.5,0.5)
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T>& setTextureScaleCenter( f32 sx, f32 sy );
- //! Sets all matrix data members at once
- CMatrix4<T>& setM(const T* data);
- //! Sets if the matrix is definitely identity matrix
- void setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix);
- //! Gets if the matrix is definitely identity matrix
- bool getDefinitelyIdentityMatrix() const;
- //! Compare two matrices using the equal method
- bool equals(const core::CMatrix4<T>& other, const T tolerance=(T)ROUNDING_ERROR_f64) const;
- private:
- //! Matrix data, stored in row-major order
- T M[16];
- #if defined ( USE_MATRIX_TEST )
- //! Flag is this matrix is identity matrix
- mutable u32 definitelyIdentityMatrix;
- #endif
- #if defined ( USE_MATRIX_TEST_DEBUG )
- u32 id;
- mutable u32 calls;
- #endif
- };
- // Default constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4( eConstructor constructor )
- #if defined ( USE_MATRIX_TEST )
- : definitelyIdentityMatrix(BIT_UNTESTED)
- #endif
- #if defined ( USE_MATRIX_TEST_DEBUG )
- ,id ( MTest.ID++), calls ( 0 )
- #endif
- {
- switch ( constructor )
- {
- case EM4CONST_NOTHING:
- case EM4CONST_COPY:
- break;
- case EM4CONST_IDENTITY:
- case EM4CONST_INVERSE:
- default:
- makeIdentity();
- break;
- }
- }
- // Copy constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4( const CMatrix4<T>& other, eConstructor constructor)
- #if defined ( USE_MATRIX_TEST )
- : definitelyIdentityMatrix(BIT_UNTESTED)
- #endif
- #if defined ( USE_MATRIX_TEST_DEBUG )
- ,id ( MTest.ID++), calls ( 0 )
- #endif
- {
- switch ( constructor )
- {
- case EM4CONST_IDENTITY:
- makeIdentity();
- break;
- case EM4CONST_NOTHING:
- break;
- case EM4CONST_COPY:
- *this = other;
- break;
- case EM4CONST_TRANSPOSED:
- other.getTransposed(*this);
- break;
- case EM4CONST_INVERSE:
- if (!other.getInverse(*this))
- memset(M, 0, 16*sizeof(T));
- break;
- case EM4CONST_INVERSE_TRANSPOSED:
- if (!other.getInverse(*this))
- memset(M, 0, 16*sizeof(T));
- else
- *this=getTransposed();
- break;
- }
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator+(const CMatrix4<T>& other) const
- {
- CMatrix4<T> temp ( EM4CONST_NOTHING );
- temp[0] = M[0]+other[0];
- temp[1] = M[1]+other[1];
- temp[2] = M[2]+other[2];
- temp[3] = M[3]+other[3];
- temp[4] = M[4]+other[4];
- temp[5] = M[5]+other[5];
- temp[6] = M[6]+other[6];
- temp[7] = M[7]+other[7];
- temp[8] = M[8]+other[8];
- temp[9] = M[9]+other[9];
- temp[10] = M[10]+other[10];
- temp[11] = M[11]+other[11];
- temp[12] = M[12]+other[12];
- temp[13] = M[13]+other[13];
- temp[14] = M[14]+other[14];
- temp[15] = M[15]+other[15];
- return temp;
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator+=(const CMatrix4<T>& other)
- {
- M[0]+=other[0];
- M[1]+=other[1];
- M[2]+=other[2];
- M[3]+=other[3];
- M[4]+=other[4];
- M[5]+=other[5];
- M[6]+=other[6];
- M[7]+=other[7];
- M[8]+=other[8];
- M[9]+=other[9];
- M[10]+=other[10];
- M[11]+=other[11];
- M[12]+=other[12];
- M[13]+=other[13];
- M[14]+=other[14];
- M[15]+=other[15];
- return *this;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator-(const CMatrix4<T>& other) const
- {
- CMatrix4<T> temp ( EM4CONST_NOTHING );
- temp[0] = M[0]-other[0];
- temp[1] = M[1]-other[1];
- temp[2] = M[2]-other[2];
- temp[3] = M[3]-other[3];
- temp[4] = M[4]-other[4];
- temp[5] = M[5]-other[5];
- temp[6] = M[6]-other[6];
- temp[7] = M[7]-other[7];
- temp[8] = M[8]-other[8];
- temp[9] = M[9]-other[9];
- temp[10] = M[10]-other[10];
- temp[11] = M[11]-other[11];
- temp[12] = M[12]-other[12];
- temp[13] = M[13]-other[13];
- temp[14] = M[14]-other[14];
- temp[15] = M[15]-other[15];
- return temp;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator-=(const CMatrix4<T>& other)
- {
- M[0]-=other[0];
- M[1]-=other[1];
- M[2]-=other[2];
- M[3]-=other[3];
- M[4]-=other[4];
- M[5]-=other[5];
- M[6]-=other[6];
- M[7]-=other[7];
- M[8]-=other[8];
- M[9]-=other[9];
- M[10]-=other[10];
- M[11]-=other[11];
- M[12]-=other[12];
- M[13]-=other[13];
- M[14]-=other[14];
- M[15]-=other[15];
- return *this;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const T& scalar) const
- {
- CMatrix4<T> temp ( EM4CONST_NOTHING );
- temp[0] = M[0]*scalar;
- temp[1] = M[1]*scalar;
- temp[2] = M[2]*scalar;
- temp[3] = M[3]*scalar;
- temp[4] = M[4]*scalar;
- temp[5] = M[5]*scalar;
- temp[6] = M[6]*scalar;
- temp[7] = M[7]*scalar;
- temp[8] = M[8]*scalar;
- temp[9] = M[9]*scalar;
- temp[10] = M[10]*scalar;
- temp[11] = M[11]*scalar;
- temp[12] = M[12]*scalar;
- temp[13] = M[13]*scalar;
- temp[14] = M[14]*scalar;
- temp[15] = M[15]*scalar;
- return temp;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator*=(const T& scalar)
- {
- M[0]*=scalar;
- M[1]*=scalar;
- M[2]*=scalar;
- M[3]*=scalar;
- M[4]*=scalar;
- M[5]*=scalar;
- M[6]*=scalar;
- M[7]*=scalar;
- M[8]*=scalar;
- M[9]*=scalar;
- M[10]*=scalar;
- M[11]*=scalar;
- M[12]*=scalar;
- M[13]*=scalar;
- M[14]*=scalar;
- M[15]*=scalar;
- return *this;
- }
- //! Multiply by another matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator*=(const CMatrix4<T>& other)
- {
- #if defined ( USE_MATRIX_TEST )
- // do checks on your own in order to avoid copy creation
- if ( !other.isIdentity() )
- {
- if ( this->isIdentity() )
- {
- return (*this = other);
- }
- else
- {
- CMatrix4<T> temp ( *this );
- return setbyproduct_nocheck( temp, other );
- }
- }
- return *this;
- #else
- const CMatrix4<T> temp ( *this );
- return setbyproduct_nocheck( temp, other );
- #endif
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setbyproduct_nocheck(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b )
- {
- const T *m1 = other_a.M;
- const T *m2 = other_b.M;
- M[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3];
- M[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3];
- M[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3];
- M[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3];
- M[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7];
- M[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7];
- M[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7];
- M[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7];
- M[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11];
- M[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11];
- M[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11];
- M[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11];
- M[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15];
- M[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15];
- M[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15];
- M[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15];
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setbyproduct(const CMatrix4<T>& other_a, const CMatrix4<T>& other_b )
- {
- #if defined ( USE_MATRIX_TEST )
- if ( other_a.isIdentity () )
- return (*this = other_b);
- else
- if ( other_b.isIdentity () )
- return (*this = other_a);
- else
- return setbyproduct_nocheck(other_a,other_b);
- #else
- return setbyproduct_nocheck(other_a,other_b);
- #endif
- }
- //! multiply by another matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const CMatrix4<T>& m2) const
- {
- #if defined ( USE_MATRIX_TEST )
- // Testing purpose..
- if ( this->isIdentity() )
- return m2;
- if ( m2.isIdentity() )
- return *this;
- #endif
- CMatrix4<T> m3 ( EM4CONST_NOTHING );
- const T *m1 = M;
- m3[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3];
- m3[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3];
- m3[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3];
- m3[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3];
- m3[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7];
- m3[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7];
- m3[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7];
- m3[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7];
- m3[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11];
- m3[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11];
- m3[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11];
- m3[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11];
- m3[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15];
- m3[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15];
- m3[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15];
- m3[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15];
- return m3;
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::getTranslation() const
- {
- return vector3d<T>(M[12], M[13], M[14]);
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTranslation( const vector3d<T>& translation )
- {
- M[12] = translation.X;
- M[13] = translation.Y;
- M[14] = translation.Z;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setInverseTranslation( const vector3d<T>& translation )
- {
- M[12] = -translation.X;
- M[13] = -translation.Y;
- M[14] = -translation.Z;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setScale( const vector3d<T>& scale )
- {
- M[0] = scale.X;
- M[5] = scale.Y;
- M[10] = scale.Z;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- //! Returns the absolute values of the scales of the matrix.
- /**
- Note: You only get back original values if the matrix only set the scale.
- Otherwise the result is a scale you can use to normalize the matrix axes,
- but it's usually no longer what you did set with setScale.
- */
- template <class T>
- inline vector3d<T> CMatrix4<T>::getScale() const
- {
- // See http://www.robertblum.com/articles/2005/02/14/decomposing-matrices
- // Deal with the 0 rotation case first
- // Prior to Irrlicht 1.6, we always returned this value.
- if(core::iszero(M[1]) && core::iszero(M[2]) &&
- core::iszero(M[4]) && core::iszero(M[6]) &&
- core::iszero(M[8]) && core::iszero(M[9]))
- return vector3d<T>(M[0], M[5], M[10]);
- // We have to do the full calculation.
- return vector3d<T>(sqrtf(M[0] * M[0] + M[1] * M[1] + M[2] * M[2]),
- sqrtf(M[4] * M[4] + M[5] * M[5] + M[6] * M[6]),
- sqrtf(M[8] * M[8] + M[9] * M[9] + M[10] * M[10]));
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setRotationDegrees( const vector3d<T>& rotation )
- {
- return setRotationRadians( rotation * core::DEGTORAD );
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setInverseRotationDegrees( const vector3d<T>& rotation )
- {
- return setInverseRotationRadians( rotation * core::DEGTORAD );
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setRotationRadians( const vector3d<T>& rotation )
- {
- const f64 cr = cos( rotation.X );
- const f64 sr = sin( rotation.X );
- const f64 cp = cos( rotation.Y );
- const f64 sp = sin( rotation.Y );
- const f64 cy = cos( rotation.Z );
- const f64 sy = sin( rotation.Z );
- M[0] = (T)( cp*cy );
- M[1] = (T)( cp*sy );
- M[2] = (T)( -sp );
- const f64 srsp = sr*sp;
- const f64 crsp = cr*sp;
- M[4] = (T)( srsp*cy-cr*sy );
- M[5] = (T)( srsp*sy+cr*cy );
- M[6] = (T)( sr*cp );
- M[8] = (T)( crsp*cy+sr*sy );
- M[9] = (T)( crsp*sy-sr*cy );
- M[10] = (T)( cr*cp );
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- //! Returns a rotation which (mostly) works in combination with the given scale
- /**
- This code was originally written by by Chev (assuming no scaling back then,
- we can be blamed for all problems added by regarding scale)
- */
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees(const vector3d<T>& scale_) const
- {
- const CMatrix4<T> &mat = *this;
- const core::vector3d<f64> scale(core::iszero(scale_.X) ? FLT_MAX : scale_.X , core::iszero(scale_.Y) ? FLT_MAX : scale_.Y, core::iszero(scale_.Z) ? FLT_MAX : scale_.Z);
- const core::vector3d<f64> invScale(core::reciprocal(scale.X),core::reciprocal(scale.Y),core::reciprocal(scale.Z));
- f64 Y = -asin(core::clamp(mat[2]*invScale.X, -1.0, 1.0));
- const f64 C = cos(Y);
- Y *= RADTODEG64;
- f64 rotx, roty, X, Z;
- if (!core::iszero((T)C))
- {
- const f64 invC = core::reciprocal(C);
- rotx = mat[10] * invC * invScale.Z;
- roty = mat[6] * invC * invScale.Y;
- X = atan2( roty, rotx ) * RADTODEG64;
- rotx = mat[0] * invC * invScale.X;
- roty = mat[1] * invC * invScale.X;
- Z = atan2( roty, rotx ) * RADTODEG64;
- }
- else
- {
- X = 0.0;
- rotx = mat[5] * invScale.Y;
- roty = -mat[4] * invScale.Y;
- Z = atan2( roty, rotx ) * RADTODEG64;
- }
- // fix values that get below zero
- if (X < 0.0) X += 360.0;
- if (Y < 0.0) Y += 360.0;
- if (Z < 0.0) Z += 360.0;
- return vector3d<T>((T)X,(T)Y,(T)Z);
- }
- //! Returns a rotation that is equivalent to that set by setRotationDegrees().
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees() const
- {
- // Note: Using getScale() here make it look like it could do matrix decomposition.
- // It can't! It works (or should work) as long as rotation doesn't flip the handedness
- // aka scale swapping 1 or 3 axes. (I think we could catch that as well by comparing
- // cross product of first 2 axes to direction of third axis, but TODO)
- // And maybe it should also offer the solution for the simple calculation
- // without regarding scaling as Irrlicht did before 1.7
- core::vector3d<T> scale(getScale());
- // We assume the matrix uses rotations instead of negative scaling 2 axes.
- // Otherwise it fails even for some simple cases, like rotating around
- // 2 axes by 180° which getScale thinks is a negative scaling.
- if (scale.Y<0 && scale.Z<0)
- {
- scale.Y =-scale.Y;
- scale.Z =-scale.Z;
- }
- else if (scale.X<0 && scale.Z<0)
- {
- scale.X =-scale.X;
- scale.Z =-scale.Z;
- }
- else if (scale.X<0 && scale.Y<0)
- {
- scale.X =-scale.X;
- scale.Y =-scale.Y;
- }
- return getRotationDegrees(scale);
- }
- //! Sets matrix to rotation matrix of inverse angles given as parameters
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setInverseRotationRadians( const vector3d<T>& rotation )
- {
- f64 cr = cos( rotation.X );
- f64 sr = sin( rotation.X );
- f64 cp = cos( rotation.Y );
- f64 sp = sin( rotation.Y );
- f64 cy = cos( rotation.Z );
- f64 sy = sin( rotation.Z );
- M[0] = (T)( cp*cy );
- M[4] = (T)( cp*sy );
- M[8] = (T)( -sp );
- f64 srsp = sr*sp;
- f64 crsp = cr*sp;
- M[1] = (T)( srsp*cy-cr*sy );
- M[5] = (T)( srsp*sy+cr*cy );
- M[9] = (T)( sr*cp );
- M[2] = (T)( crsp*cy+sr*sy );
- M[6] = (T)( crsp*sy-sr*cy );
- M[10] = (T)( cr*cp );
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- //! Sets matrix to rotation matrix defined by axis and angle, assuming LH rotation
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setRotationAxisRadians( const T& angle, const vector3d<T>& axis )
- {
- const f64 c = cos(angle);
- const f64 s = sin(angle);
- const f64 t = 1.0 - c;
- const f64 tx = t * axis.X;
- const f64 ty = t * axis.Y;
- const f64 tz = t * axis.Z;
- const f64 sx = s * axis.X;
- const f64 sy = s * axis.Y;
- const f64 sz = s * axis.Z;
- M[0] = (T)(tx * axis.X + c);
- M[1] = (T)(tx * axis.Y + sz);
- M[2] = (T)(tx * axis.Z - sy);
- M[4] = (T)(ty * axis.X - sz);
- M[5] = (T)(ty * axis.Y + c);
- M[6] = (T)(ty * axis.Z + sx);
- M[8] = (T)(tz * axis.X + sy);
- M[9] = (T)(tz * axis.Y - sx);
- M[10] = (T)(tz * axis.Z + c);
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- /*!
- */
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::makeIdentity()
- {
- memset(M, 0, 16*sizeof(T));
- M[0] = M[5] = M[10] = M[15] = (T)1;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=true;
- #endif
- return *this;
- }
- /*
- check identity with epsilon
- solve floating range problems..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity() const
- {
- #if defined ( USE_MATRIX_TEST )
- if (definitelyIdentityMatrix)
- return true;
- #endif
- if (!core::equals( M[12], (T)0 ) || !core::equals( M[13], (T)0 ) || !core::equals( M[14], (T)0 ) || !core::equals( M[15], (T)1 ))
- return false;
- if (!core::equals( M[ 0], (T)1 ) || !core::equals( M[ 1], (T)0 ) || !core::equals( M[ 2], (T)0 ) || !core::equals( M[ 3], (T)0 ))
- return false;
- if (!core::equals( M[ 4], (T)0 ) || !core::equals( M[ 5], (T)1 ) || !core::equals( M[ 6], (T)0 ) || !core::equals( M[ 7], (T)0 ))
- return false;
- if (!core::equals( M[ 8], (T)0 ) || !core::equals( M[ 9], (T)0 ) || !core::equals( M[10], (T)1 ) || !core::equals( M[11], (T)0 ))
- return false;
- /*
- if (!core::equals( M[ 0], (T)1 ) ||
- !core::equals( M[ 5], (T)1 ) ||
- !core::equals( M[10], (T)1 ) ||
- !core::equals( M[15], (T)1 ))
- return false;
- for (s32 i=0; i<4; ++i)
- for (s32 j=0; j<4; ++j)
- if ((j != i) && (!iszero((*this)(i,j))))
- return false;
- */
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=true;
- #endif
- return true;
- }
- /* Check orthogonality of matrix. */
- template <class T>
- inline bool CMatrix4<T>::isOrthogonal() const
- {
- T dp=M[0] * M[4 ] + M[1] * M[5 ] + M[2 ] * M[6 ] + M[3 ] * M[7 ];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[8 ] + M[1] * M[9 ] + M[2 ] * M[10] + M[3 ] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[12] + M[1] * M[13] + M[2 ] * M[14] + M[3 ] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[8 ] + M[5] * M[9 ] + M[6 ] * M[10] + M[7 ] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[12] + M[5] * M[13] + M[6 ] * M[14] + M[7 ] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[8] * M[12] + M[9] * M[13] + M[10] * M[14] + M[11] * M[15];
- return (iszero(dp));
- }
- /*
- doesn't solve floating range problems..
- but takes care on +/- 0 on translation because we are changing it..
- reducing floating point branches
- but it needs the floats in memory..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity_integer_base() const
- {
- #if defined ( USE_MATRIX_TEST )
- if (definitelyIdentityMatrix)
- return true;
- #endif
- if(IR(M[0])!=F32_VALUE_1) return false;
- if(IR(M[1])!=0) return false;
- if(IR(M[2])!=0) return false;
- if(IR(M[3])!=0) return false;
- if(IR(M[4])!=0) return false;
- if(IR(M[5])!=F32_VALUE_1) return false;
- if(IR(M[6])!=0) return false;
- if(IR(M[7])!=0) return false;
- if(IR(M[8])!=0) return false;
- if(IR(M[9])!=0) return false;
- if(IR(M[10])!=F32_VALUE_1) return false;
- if(IR(M[11])!=0) return false;
- if(IR(M[12])!=0) return false;
- if(IR(M[13])!=0) return false;
- if(IR(M[13])!=0) return false;
- if(IR(M[15])!=F32_VALUE_1) return false;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=true;
- #endif
- return true;
- }
- template <class T>
- inline void CMatrix4<T>::rotateVect( vector3df& vect ) const
- {
- const vector3d<T> tmp(static_cast<T>(vect.X), static_cast<T>(vect.Y), static_cast<T>(vect.Z));
- vect.X = static_cast<f32>(tmp.X*M[0] + tmp.Y*M[4] + tmp.Z*M[8]);
- vect.Y = static_cast<f32>(tmp.X*M[1] + tmp.Y*M[5] + tmp.Z*M[9]);
- vect.Z = static_cast<f32>(tmp.X*M[2] + tmp.Y*M[6] + tmp.Z*M[10]);
- }
- //! An alternate transform vector method, writing into a second vector
- template <class T>
- inline void CMatrix4<T>::rotateVect(core::vector3df& out, const core::vector3df& in) const
- {
- out.X = in.X*M[0] + in.Y*M[4] + in.Z*M[8];
- out.Y = in.X*M[1] + in.Y*M[5] + in.Z*M[9];
- out.Z = in.X*M[2] + in.Y*M[6] + in.Z*M[10];
- }
- //! An alternate transform vector method, writing into an array of 3 floats
- template <class T>
- inline void CMatrix4<T>::rotateVect(T *out, const core::vector3df& in) const
- {
- out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8];
- out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9];
- out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10];
- }
- template <class T>
- inline void CMatrix4<T>::inverseRotateVect( vector3df& vect ) const
- {
- const vector3d<T> tmp(static_cast<T>(vect.X), static_cast<T>(vect.Y), static_cast<T>(vect.Z));
- vect.X = static_cast<f32>(tmp.X*M[0] + tmp.Y*M[1] + tmp.Z*M[2]);
- vect.Y = static_cast<f32>(tmp.X*M[4] + tmp.Y*M[5] + tmp.Z*M[6]);
- vect.Z = static_cast<f32>(tmp.X*M[8] + tmp.Y*M[9] + tmp.Z*M[10]);
- }
- template <class T>
- inline void CMatrix4<T>::transformVect( vector3df& vect) const
- {
- T vector[3];
- vector[0] = vect.X*M[0] + vect.Y*M[4] + vect.Z*M[8] + M[12];
- vector[1] = vect.X*M[1] + vect.Y*M[5] + vect.Z*M[9] + M[13];
- vector[2] = vect.X*M[2] + vect.Y*M[6] + vect.Z*M[10] + M[14];
- vect.X = static_cast<f32>(vector[0]);
- vect.Y = static_cast<f32>(vector[1]);
- vect.Z = static_cast<f32>(vector[2]);
- }
- template <class T>
- inline void CMatrix4<T>::transformVect( vector3df& out, const vector3df& in) const
- {
- out.X = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12];
- out.Y = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13];
- out.Z = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14];
- }
- template <class T>
- inline void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
- {
- out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12];
- out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13];
- out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14];
- out[3] = in.X*M[3] + in.Y*M[7] + in.Z*M[11] + M[15];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec3(T *out, const T * in) const
- {
- out[0] = in[0]*M[0] + in[1]*M[4] + in[2]*M[8] + M[12];
- out[1] = in[0]*M[1] + in[1]*M[5] + in[2]*M[9] + M[13];
- out[2] = in[0]*M[2] + in[1]*M[6] + in[2]*M[10] + M[14];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec4(T *out, const T * in) const
- {
- out[0] = in[0]*M[0] + in[1]*M[4] + in[2]*M[8] + in[3]*M[12];
- out[1] = in[0]*M[1] + in[1]*M[5] + in[2]*M[9] + in[3]*M[13];
- out[2] = in[0]*M[2] + in[1]*M[6] + in[2]*M[10] + in[3]*M[14];
- out[3] = in[0]*M[3] + in[1]*M[7] + in[2]*M[11] + in[3]*M[15];
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane( core::plane3d<f32> &plane) const
- {
- vector3df member;
- // Transform the plane member point, i.e. rotate, translate and scale it.
- transformVect(member, plane.getMemberPoint());
- // Transform the normal by the transposed inverse of the matrix
- const CMatrix4<T> transposedInverse(*this, EM4CONST_INVERSE_TRANSPOSED);
- vector3df normal = plane.Normal;
- transposedInverse.rotateVect(normal);
- plane.setPlane(member, normal.normalize());
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane( const core::plane3d<f32> &in, core::plane3d<f32> &out) const
- {
- out = in;
- transformPlane( out );
- }
- //! Transforms the edge-points of a bounding box
- //! Deprecated as it's usually not what people need (regards only 2 corners, but other corners might be outside the box after transformation)
- //! Use transformBoxEx instead.
- template <class T>
- IRR_DEPRECATED inline void CMatrix4<T>::transformBox(core::aabbox3d<f32>& box) const
- {
- #if defined ( USE_MATRIX_TEST )
- if (isIdentity())
- return;
- #endif
- transformVect(box.MinEdge);
- transformVect(box.MaxEdge);
- box.repair();
- }
- //! Transforms a axis aligned bounding box more accurately than transformBox()
- template <class T>
- inline void CMatrix4<T>::transformBoxEx(core::aabbox3d<f32>& box) const
- {
- #if defined ( USE_MATRIX_TEST )
- if (isIdentity())
- return;
- #endif
- const f32 Amin[3] = {box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z};
- const f32 Amax[3] = {box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z};
- f32 Bmin[3];
- f32 Bmax[3];
- Bmin[0] = Bmax[0] = M[12];
- Bmin[1] = Bmax[1] = M[13];
- Bmin[2] = Bmax[2] = M[14];
- const CMatrix4<T> &m = *this;
- for (u32 i = 0; i < 3; ++i)
- {
- for (u32 j = 0; j < 3; ++j)
- {
- const f32 a = m(j,i) * Amin[j];
- const f32 b = m(j,i) * Amax[j];
- if (a < b)
- {
- Bmin[i] += a;
- Bmax[i] += b;
- }
- else
- {
- Bmin[i] += b;
- Bmax[i] += a;
- }
- }
- }
- box.MinEdge.X = Bmin[0];
- box.MinEdge.Y = Bmin[1];
- box.MinEdge.Z = Bmin[2];
- box.MaxEdge.X = Bmax[0];
- box.MaxEdge.Y = Bmax[1];
- box.MaxEdge.Z = Bmax[2];
- }
- //! Multiplies this matrix by a 1x4 matrix
- template <class T>
- inline void CMatrix4<T>::multiplyWith1x4Matrix(T* matrix) const
- {
- /*
- 0 1 2 3
- 4 5 6 7
- 8 9 10 11
- 12 13 14 15
- */
- T mat[4];
- mat[0] = matrix[0];
- mat[1] = matrix[1];
- mat[2] = matrix[2];
- mat[3] = matrix[3];
- matrix[0] = M[0]*mat[0] + M[4]*mat[1] + M[8]*mat[2] + M[12]*mat[3];
- matrix[1] = M[1]*mat[0] + M[5]*mat[1] + M[9]*mat[2] + M[13]*mat[3];
- matrix[2] = M[2]*mat[0] + M[6]*mat[1] + M[10]*mat[2] + M[14]*mat[3];
- matrix[3] = M[3]*mat[0] + M[7]*mat[1] + M[11]*mat[2] + M[15]*mat[3];
- }
- template <class T>
- inline void CMatrix4<T>::inverseTranslateVect( vector3df& vect ) const
- {
- vect.X = vect.X-M[12];
- vect.Y = vect.Y-M[13];
- vect.Z = vect.Z-M[14];
- }
- template <class T>
- inline void CMatrix4<T>::translateVect( vector3df& vect ) const
- {
- vect.X = vect.X+M[12];
- vect.Y = vect.Y+M[13];
- vect.Z = vect.Z+M[14];
- }
- template <class T>
- inline bool CMatrix4<T>::getInverse(CMatrix4<T>& out) const
- {
- /// Calculates the inverse of this Matrix
- /// The inverse is calculated using Cramers rule.
- /// If no inverse exists then 'false' is returned.
- #if defined ( USE_MATRIX_TEST )
- if ( this->isIdentity() )
- {
- out=*this;
- return true;
- }
- #endif
- const CMatrix4<T> &m = *this;
- f32 d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
- (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
- (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
- (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
- (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
- (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
- if( core::iszero ( d, FLT_MIN ) )
- return false;
- d = core::reciprocal ( d );
- out[0] = d * (m[5] * (m[10] * m[15] - m[11] * m[14]) +
- m[6] * (m[11] * m[13] - m[9] * m[15]) +
- m[7] * (m[9] * m[14] - m[10] * m[13]));
- out[1] = d * (m[9] * (m[2] * m[15] - m[3] * m[14]) +
- m[10] * (m[3] * m[13] - m[1] * m[15]) +
- m[11] * (m[1] * m[14] - m[2] * m[13]));
- out[2] = d * (m[13] * (m[2] * m[7] - m[3] * m[6]) +
- m[14] * (m[3] * m[5] - m[1] * m[7]) +
- m[15] * (m[1] * m[6] - m[2] * m[5]));
- out[3] = d * (m[1] * (m[7] * m[10] - m[6] * m[11]) +
- m[2] * (m[5] * m[11] - m[7] * m[9]) +
- m[3] * (m[6] * m[9] - m[5] * m[10]));
- out[4] = d * (m[6] * (m[8] * m[15] - m[11] * m[12]) +
- m[7] * (m[10] * m[12] - m[8] * m[14]) +
- m[4] * (m[11] * m[14] - m[10] * m[15]));
- out[5] = d * (m[10] * (m[0] * m[15] - m[3] * m[12]) +
- m[11] * (m[2] * m[12] - m[0] * m[14]) +
- m[8] * (m[3] * m[14] - m[2] * m[15]));
- out[6] = d * (m[14] * (m[0] * m[7] - m[3] * m[4]) +
- m[15] * (m[2] * m[4] - m[0] * m[6]) +
- m[12] * (m[3] * m[6] - m[2] * m[7]));
- out[7] = d * (m[2] * (m[7] * m[8] - m[4] * m[11]) +
- m[3] * (m[4] * m[10] - m[6] * m[8]) +
- m[0] * (m[6] * m[11] - m[7] * m[10]));
- out[8] = d * (m[7] * (m[8] * m[13] - m[9] * m[12]) +
- m[4] * (m[9] * m[15] - m[11] * m[13]) +
- m[5] * (m[11] * m[12] - m[8] * m[15]));
- out[9] = d * (m[11] * (m[0] * m[13] - m[1] * m[12]) +
- m[8] * (m[1] * m[15] - m[3] * m[13]) +
- m[9] * (m[3] * m[12] - m[0] * m[15]));
- out[10] = d * (m[15] * (m[0] * m[5] - m[1] * m[4]) +
- m[12] * (m[1] * m[7] - m[3] * m[5]) +
- m[13] * (m[3] * m[4] - m[0] * m[7]));
- out[11] = d * (m[3] * (m[5] * m[8] - m[4] * m[9]) +
- m[0] * (m[7] * m[9] - m[5] * m[11]) +
- m[1] * (m[4] * m[11] - m[7] * m[8]));
- out[12] = d * (m[4] * (m[10] * m[13] - m[9] * m[14]) +
- m[5] * (m[8] * m[14] - m[10] * m[12]) +
- m[6] * (m[9] * m[12] - m[8] * m[13]));
- out[13] = d * (m[8] * (m[2] * m[13] - m[1] * m[14]) +
- m[9] * (m[0] * m[14] - m[2] * m[12]) +
- m[10] * (m[1] * m[12] - m[0] * m[13]));
- out[14] = d * (m[12] * (m[2] * m[5] - m[1] * m[6]) +
- m[13] * (m[0] * m[6] - m[2] * m[4]) +
- m[14] * (m[1] * m[4] - m[0] * m[5]));
- out[15] = d * (m[0] * (m[5] * m[10] - m[6] * m[9]) +
- m[1] * (m[6] * m[8] - m[4] * m[10]) +
- m[2] * (m[4] * m[9] - m[5] * m[8]));
- #if defined ( USE_MATRIX_TEST )
- out.definitelyIdentityMatrix = definitelyIdentityMatrix;
- #endif
- return true;
- }
- //! Inverts a primitive matrix which only contains a translation and a rotation
- //! \param out: where result matrix is written to.
- template <class T>
- inline bool CMatrix4<T>::getInversePrimitive ( CMatrix4<T>& out ) const
- {
- out.M[0 ] = M[0];
- out.M[1 ] = M[4];
- out.M[2 ] = M[8];
- out.M[3 ] = 0;
- out.M[4 ] = M[1];
- out.M[5 ] = M[5];
- out.M[6 ] = M[9];
- out.M[7 ] = 0;
- out.M[8 ] = M[2];
- out.M[9 ] = M[6];
- out.M[10] = M[10];
- out.M[11] = 0;
- out.M[12] = (T)-(M[12]*M[0] + M[13]*M[1] + M[14]*M[2]);
- out.M[13] = (T)-(M[12]*M[4] + M[13]*M[5] + M[14]*M[6]);
- out.M[14] = (T)-(M[12]*M[8] + M[13]*M[9] + M[14]*M[10]);
- out.M[15] = 1;
- #if defined ( USE_MATRIX_TEST )
- out.definitelyIdentityMatrix = definitelyIdentityMatrix;
- #endif
- return true;
- }
- /*!
- */
- template <class T>
- inline bool CMatrix4<T>::makeInverse()
- {
- #if defined ( USE_MATRIX_TEST )
- if (definitelyIdentityMatrix)
- return true;
- #endif
- CMatrix4<T> temp ( EM4CONST_NOTHING );
- if (getInverse(temp))
- {
- *this = temp;
- return true;
- }
- return false;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator=(const CMatrix4<T> &other)
- {
- if (this==&other)
- return *this;
- memcpy(M, other.M, 16*sizeof(T));
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=other.definitelyIdentityMatrix;
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::operator=(const T& scalar)
- {
- for (s32 i = 0; i < 16; ++i)
- M[i]=scalar;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- template <class T>
- inline bool CMatrix4<T>::operator==(const CMatrix4<T> &other) const
- {
- #if defined ( USE_MATRIX_TEST )
- if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
- return true;
- #endif
- for (s32 i = 0; i < 16; ++i)
- if (M[i] != other.M[i])
- return false;
- return true;
- }
- template <class T>
- inline bool CMatrix4<T>::operator!=(const CMatrix4<T> &other) const
- {
- return !(*this == other);
- }
- // Builds a perspective projection matrix
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFov(T sx, T sy, T zNear, T zFar, bool zClipFromZero, T zSign, T shiftX, T shiftY)
- {
- IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
- M[0] = sx;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
-
- M[4] = 0;
- M[5] = sy;
- M[6] = 0;
- M[7] = 0;
- M[8] = shiftX;
- M[9] = shiftY;
- //M[10] below
- M[11] = zSign;
-
- M[12] = 0;
- M[13] = 0;
- //M[14] below
- M[15] = 0;
-
- if ( zClipFromZero ) // DirectX version
- {
- M[10] = zSign*zFar/(zFar-zNear);
- M[14] = (T)(zNear*zFar/(zNear-zFar));
- }
- else // OpenGL version
- {
- M[10] = zSign*(zFar+zNear)/(zFar-zNear);
- M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar));
- }
-
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a right-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero, f32 shiftX, f32 shiftY)
- {
- const f64 sy = reciprocal(tan(fieldOfViewRadians*0.5));
- IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
- const T sx = static_cast<T>(sy / aspectRatio);
- return buildProjectionMatrixPerspectiveFov(sx, static_cast<T>(sy), zNear, zFar, zClipFromZero, (T)-1, shiftX, shiftY);
- }
- // Builds a left-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero, f32 shiftX, f32 shiftY)
- {
- const f64 sy = reciprocal(tan(fieldOfViewRadians*0.5));
- IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
- const T sx = static_cast<T>(sy / aspectRatio);
- return buildProjectionMatrixPerspectiveFov(sx, static_cast<T>(sy), zNear, zFar, zClipFromZero, (T)1, shiftX, shiftY);
- }
- // Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
- IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- M[10] = (T)(1.f-epsilon);
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- M[14] = (T)(zNear*(epsilon-1.f));
- M[15] = 0;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a left-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixOrthoLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
- M[0] = (T)(2/widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2/heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if ( zClipFromZero )
- {
- M[10] = (T)(1/(zFar-zNear));
- M[14] = (T)(zNear/(zNear-zFar));
- }
- else
- {
- M[10] = (T)(2/(zFar-zNear));
- M[14] = (T)-(zFar+zNear)/(zFar-zNear);
- }
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a right-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixOrthoRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
- M[0] = (T)(2/widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2/heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if ( zClipFromZero )
- {
- M[10] = (T)(1/(zNear-zFar));
- M[14] = (T)(zNear/(zNear-zFar));
- }
- else
- {
- M[10] = (T)(2/(zNear-zFar));
- M[14] = (T)-(zFar+zNear)/(zFar-zNear);
- }
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a right-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero, f32 shiftX, f32 shiftY)
- {
- IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
- const T sx = (T)(2*zNear/widthOfViewVolume);
- const T sy = (T)(2*zNear/heightOfViewVolume);
- return buildProjectionMatrixPerspectiveFov(sx, sy, zNear, zFar, zClipFromZero, (T)-1, shiftX, shiftY);
- }
- // Builds a left-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero, f32 shiftX, f32 shiftY)
- {
- IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
- IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
- const T sx = (T)(2*zNear/widthOfViewVolume);
- const T sy = (T)(2*zNear/heightOfViewVolume);
- return buildProjectionMatrixPerspectiveFov(sx, sy, zNear, zFar, zClipFromZero, (T)1, shiftX, shiftY);
- }
- // Builds a matrix that flattens geometry into a plane.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point)
- {
- plane.Normal.normalize();
- const f32 d = plane.Normal.dotProduct(light);
- M[ 0] = (T)(-plane.Normal.X * light.X + d);
- M[ 1] = (T)(-plane.Normal.X * light.Y);
- M[ 2] = (T)(-plane.Normal.X * light.Z);
- M[ 3] = (T)(-plane.Normal.X * point);
- M[ 4] = (T)(-plane.Normal.Y * light.X);
- M[ 5] = (T)(-plane.Normal.Y * light.Y + d);
- M[ 6] = (T)(-plane.Normal.Y * light.Z);
- M[ 7] = (T)(-plane.Normal.Y * point);
- M[ 8] = (T)(-plane.Normal.Z * light.X);
- M[ 9] = (T)(-plane.Normal.Z * light.Y);
- M[10] = (T)(-plane.Normal.Z * light.Z + d);
- M[11] = (T)(-plane.Normal.Z * point);
- M[12] = (T)(-plane.D * light.X);
- M[13] = (T)(-plane.D * light.Y);
- M[14] = (T)(-plane.D * light.Z);
- M[15] = (T)(-plane.D * point + d);
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a left-handed look-at matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildCameraLookAtMatrixLH(
- const vector3df& position,
- const vector3df& target,
- const vector3df& upVector)
- {
- vector3df zaxis = target - position;
- zaxis.normalize_z();
- vector3df xaxis = normalize_y(upVector).crossProduct(zaxis);
- xaxis.normalize_x();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // Builds a right-handed look-at matrix.
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildCameraLookAtMatrixRH(
- const vector3df& position,
- const vector3df& target,
- const vector3df& upVector)
- {
- vector3df zaxis = position - target;
- zaxis.normalize();
- vector3df xaxis = upVector.crossProduct(zaxis);
- xaxis.normalize();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // creates a new matrix as interpolated matrix from this and the passed one.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::interpolate(const core::CMatrix4<T>& b, f32 time) const
- {
- CMatrix4<T> mat ( EM4CONST_NOTHING );
- for (u32 i=0; i < 16; i += 4)
- {
- mat.M[i+0] = (T)(M[i+0] + ( b.M[i+0] - M[i+0] ) * time);
- mat.M[i+1] = (T)(M[i+1] + ( b.M[i+1] - M[i+1] ) * time);
- mat.M[i+2] = (T)(M[i+2] + ( b.M[i+2] - M[i+2] ) * time);
- mat.M[i+3] = (T)(M[i+3] + ( b.M[i+3] - M[i+3] ) * time);
- }
- return mat;
- }
- // returns transposed matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::getTransposed() const
- {
- CMatrix4<T> t ( EM4CONST_NOTHING );
- getTransposed ( t );
- return t;
- }
- // returns transposed matrix
- template <class T>
- inline void CMatrix4<T>::getTransposed( CMatrix4<T>& o ) const
- {
- o[ 0] = M[ 0];
- o[ 1] = M[ 4];
- o[ 2] = M[ 8];
- o[ 3] = M[12];
- o[ 4] = M[ 1];
- o[ 5] = M[ 5];
- o[ 6] = M[ 9];
- o[ 7] = M[13];
- o[ 8] = M[ 2];
- o[ 9] = M[ 6];
- o[10] = M[10];
- o[11] = M[14];
- o[12] = M[ 3];
- o[13] = M[ 7];
- o[14] = M[11];
- o[15] = M[15];
- #if defined ( USE_MATRIX_TEST )
- o.definitelyIdentityMatrix=definitelyIdentityMatrix;
- #endif
- }
- // used to scale <-1,-1><1,1> to viewport
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildNDCToDCMatrix( const core::rect<s32>& viewport, f32 zScale)
- {
- const f32 scaleX = (viewport.getWidth() - 0.75f ) * 0.5f;
- const f32 scaleY = -(viewport.getHeight() - 0.75f ) * 0.5f;
- const f32 dx = -0.5f + ( (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X ) * 0.5f );
- const f32 dy = -0.5f + ( (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y ) * 0.5f );
- makeIdentity();
- M[12] = (T)dx;
- M[13] = (T)dy;
- return setScale(core::vector3d<T>((T)scaleX, (T)scaleY, (T)zScale));
- }
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
- */
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildRotateFromTo(const core::vector3df& from, const core::vector3df& to)
- {
- // unit vectors
- core::vector3df f(from);
- core::vector3df t(to);
- f.normalize();
- t.normalize();
- // axis multiplication by sin
- const core::vector3df vs(t.crossProduct(f));
- // axis of rotation
- core::vector3df v(vs);
- v.normalize();
- // cosine angle
- T ca = f.dotProduct(t);
- core::vector3df vt(v * (1 - ca));
- M[0] = vt.X * v.X + ca;
- M[5] = vt.Y * v.Y + ca;
- M[10] = vt.Z * v.Z + ca;
- vt.X *= v.Y;
- vt.Z *= v.X;
- vt.Y *= v.Z;
- M[1] = vt.X - vs.Z;
- M[2] = vt.Z + vs.Y;
- M[3] = 0;
- M[4] = vt.X + vs.Z;
- M[6] = vt.Y - vs.X;
- M[7] = 0;
- M[8] = vt.Z - vs.Y;
- M[9] = vt.Y + vs.X;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- return *this;
- }
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coord
- \param center: object position in world-coord, rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- template <class T>
- inline void CMatrix4<T>::buildAxisAlignedBillboard(
- const core::vector3df& camPos,
- const core::vector3df& center,
- const core::vector3df& translation,
- const core::vector3df& axis,
- const core::vector3df& from)
- {
- // axis of rotation
- core::vector3df up = axis;
- up.normalize();
- const core::vector3df forward = (camPos - center).normalize();
- const core::vector3df right = up.crossProduct(forward).normalize();
- // correct look vector
- const core::vector3df look = right.crossProduct(up);
- // rotate from to
- // axis multiplication by sin
- const core::vector3df vs = look.crossProduct(from);
- // cosine angle
- const f32 ca = from.dotProduct(look);
- core::vector3df vt(up * (1.f - ca));
- M[0] = static_cast<T>(vt.X * up.X + ca);
- M[5] = static_cast<T>(vt.Y * up.Y + ca);
- M[10] = static_cast<T>(vt.Z * up.Z + ca);
- vt.X *= up.Y;
- vt.Z *= up.X;
- vt.Y *= up.Z;
- M[1] = static_cast<T>(vt.X - vs.Z);
- M[2] = static_cast<T>(vt.Z + vs.Y);
- M[3] = 0;
- M[4] = static_cast<T>(vt.X + vs.Z);
- M[6] = static_cast<T>(vt.Y - vs.X);
- M[7] = 0;
- M[8] = static_cast<T>(vt.Z - vs.Y);
- M[9] = static_cast<T>(vt.Y + vs.X);
- M[11] = 0;
- setRotationCenter(center, translation);
- }
- //! Builds a combined matrix which translate to a center before rotation and translate afterward
- template <class T>
- inline void CMatrix4<T>::setRotationCenter(const core::vector3df& center, const core::vector3df& translation)
- {
- M[12] = -M[0]*center.X - M[4]*center.Y - M[8]*center.Z + (center.X - translation.X );
- M[13] = -M[1]*center.X - M[5]*center.Y - M[9]*center.Z + (center.Y - translation.Y );
- M[14] = -M[2]*center.X - M[6]*center.Y - M[10]*center.Z + (center.Z - translation.Z );
- M[15] = (T) 1.0;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- }
- /*!
- Generate texture coordinates as linear functions so that:
- u = Ux*x + Uy*y + Uz*z + Uw
- v = Vx*x + Vy*y + Vz*z + Vw
- The matrix M for this case is:
- Ux Vx 0 0
- Uy Vy 0 0
- Uz Vz 0 0
- Uw Vw 0 0
- */
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::buildTextureTransform( f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale)
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)(c * scale.X);
- M[1] = (T)(s * scale.Y);
- M[2] = 0;
- M[3] = 0;
- M[4] = (T)(-s * scale.X);
- M[5] = (T)(c * scale.Y);
- M[6] = 0;
- M[7] = 0;
- M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X);
- M[9] = (T)(s * scale.Y * rotatecenter.X + c * rotatecenter.Y + translate.Y);
- M[10] = 1;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // rotate about z axis, center ( 0.5, 0.5 )
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTextureRotationCenter( f32 rotateRad )
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)c;
- M[1] = (T)s;
- M[4] = (T)-s;
- M[5] = (T)c;
- M[8] = (T)(0.5f * ( s - c) + 0.5f);
- M[9] = (T)(-0.5f * ( s + c) + 0.5f);
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = definitelyIdentityMatrix && (rotateRad==0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTextureTranslate ( f32 x, f32 y )
- {
- M[8] = (T)x;
- M[9] = (T)y;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = definitelyIdentityMatrix && (x==0.0f) && (y==0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureTranslate(f32& x, f32& y) const
- {
- x = (f32)M[8];
- y = (f32)M[9];
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTextureTranslateTransposed ( f32 x, f32 y )
- {
- M[2] = (T)x;
- M[6] = (T)y;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = definitelyIdentityMatrix && (x==0.0f) && (y==0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTextureScale ( f32 sx, f32 sy )
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = definitelyIdentityMatrix && (sx==1.0f) && (sy==1.0f);
- #endif
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureScale ( f32& sx, f32& sy ) const
- {
- sx = (f32)M[0];
- sy = (f32)M[5];
- }
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setTextureScaleCenter( f32 sx, f32 sy )
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- M[8] = (T)(0.5f - 0.5f * sx);
- M[9] = (T)(0.5f - 0.5f * sy);
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = definitelyIdentityMatrix && (sx==1.0f) && (sy==1.0f);
- #endif
- return *this;
- }
- // sets all matrix data members at once
- template <class T>
- inline CMatrix4<T>& CMatrix4<T>::setM(const T* data)
- {
- memcpy(M,data, 16*sizeof(T));
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix=false;
- #endif
- return *this;
- }
- // sets if the matrix is definitely identity matrix
- template <class T>
- inline void CMatrix4<T>::setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix)
- {
- #if defined ( USE_MATRIX_TEST )
- definitelyIdentityMatrix = isDefinitelyIdentityMatrix;
- #else
- (void)isDefinitelyIdentityMatrix; // prevent compiler warning
- #endif
- }
- // gets if the matrix is definitely identity matrix
- template <class T>
- inline bool CMatrix4<T>::getDefinitelyIdentityMatrix() const
- {
- #if defined ( USE_MATRIX_TEST )
- return definitelyIdentityMatrix;
- #else
- return false;
- #endif
- }
- //! Compare two matrices using the equal method
- template <class T>
- inline bool CMatrix4<T>::equals(const core::CMatrix4<T>& other, const T tolerance) const
- {
- #if defined ( USE_MATRIX_TEST )
- if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
- return true;
- #endif
- for (s32 i = 0; i < 16; ++i)
- if (!core::equals(M[i],other.M[i], tolerance))
- return false;
- return true;
- }
- // Multiply by scalar.
- template <class T>
- inline CMatrix4<T> operator*(const T scalar, const CMatrix4<T>& mat)
- {
- return mat*scalar;
- }
- //! Typedef for f32 matrix
- typedef CMatrix4<f32> matrix4;
- //! global const identity matrix
- IRRLICHT_API extern const matrix4 IdentityMatrix;
- } // end namespace core
- } // end namespace irr
- #endif
|