12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082 |
- // Copyright (C) 2006-2012 by Kat'Oun
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #ifndef IRR_MAP_H_INCLUDED
- #define IRR_MAP_H_INCLUDED
- #include "irrTypes.h"
- #include "irrMath.h"
- namespace irr
- {
- namespace core
- {
- //! map template for associative arrays using a red-black tree
- template <class KeyType, class ValueType>
- class map
- {
- //! red/black tree for map
- template <class KeyTypeRB, class ValueTypeRB>
- class RBTree
- {
- public:
- RBTree(const KeyTypeRB& k, const ValueTypeRB& v)
- : LeftChild(0), RightChild(0), Parent(0), Key(k),
- Value(v), IsRed(true) {}
- void setLeftChild(RBTree* p)
- {
- LeftChild=p;
- if (p)
- p->setParent(this);
- }
- void setRightChild(RBTree* p)
- {
- RightChild=p;
- if (p)
- p->setParent(this);
- }
- void setParent(RBTree* p) { Parent=p; }
- void setValue(const ValueTypeRB& v) { Value = v; }
- void setRed() { IsRed = true; }
- void setBlack() { IsRed = false; }
- RBTree* getLeftChild() const { return LeftChild; }
- RBTree* getRightChild() const { return RightChild; }
- RBTree* getParent() const { return Parent; }
- const ValueTypeRB& getValue() const
- {
- return Value;
- }
- ValueTypeRB& getValue()
- {
- return Value;
- }
- const KeyTypeRB& getKey() const
- {
- return Key;
- }
- bool isRoot() const
- {
- return Parent==0;
- }
- bool isLeftChild() const
- {
- return (Parent != 0) && (Parent->getLeftChild()==this);
- }
- bool isRightChild() const
- {
- return (Parent!=0) && (Parent->getRightChild()==this);
- }
- bool isLeaf() const
- {
- return (LeftChild==0) && (RightChild==0);
- }
- unsigned int getLevel() const
- {
- if (isRoot())
- return 1;
- else
- return getParent()->getLevel() + 1;
- }
- bool isRed() const
- {
- return IsRed;
- }
- bool isBlack() const
- {
- return !IsRed;
- }
- private:
- RBTree();
- RBTree* LeftChild;
- RBTree* RightChild;
- RBTree* Parent;
- KeyTypeRB Key;
- ValueTypeRB Value;
- bool IsRed;
- }; // RBTree
- public:
- typedef RBTree<KeyType,ValueType> Node;
- // We need the forward declaration for the friend declaration
- class ConstIterator;
- //! Normal Iterator
- class Iterator
- {
- friend class ConstIterator;
- public:
- Iterator() : Root(0), Cur(0) {}
- // Constructor(Node*)
- Iterator(Node* root) : Root(root)
- {
- reset();
- }
- void reset(bool atLowest=true)
- {
- if (atLowest)
- Cur = getMin(Root);
- else
- Cur = getMax(Root);
- }
- bool atEnd() const
- {
- return Cur==0;
- }
- Node* getNode() const
- {
- return Cur;
- }
- void operator++(int)
- {
- inc();
- }
- void operator--(int)
- {
- dec();
- }
- Node* operator->()
- {
- return getNode();
- }
- Node& operator*()
- {
- IRR_DEBUG_BREAK_IF(atEnd()) // access violation
- return *Cur;
- }
- private:
- Node* getMin(Node* n) const
- {
- while(n && n->getLeftChild())
- n = n->getLeftChild();
- return n;
- }
- Node* getMax(Node* n) const
- {
- while(n && n->getRightChild())
- n = n->getRightChild();
- return n;
- }
- void inc()
- {
- // Already at end?
- if (Cur==0)
- return;
- if (Cur->getRightChild())
- {
- // If current node has a right child, the next higher node is the
- // node with lowest key beneath the right child.
- Cur = getMin(Cur->getRightChild());
- }
- else if (Cur->isLeftChild())
- {
- // No right child? Well if current node is a left child then
- // the next higher node is the parent
- Cur = Cur->getParent();
- }
- else
- {
- // Current node neither is left child nor has a right child.
- // I.e. it is either right child or root
- // The next higher node is the parent of the first non-right
- // child (i.e. either a left child or the root) up in the
- // hierarchy. Root's parent is 0.
- while(Cur->isRightChild())
- Cur = Cur->getParent();
- Cur = Cur->getParent();
- }
- }
- void dec()
- {
- // Already at end?
- if (Cur==0)
- return;
- if (Cur->getLeftChild())
- {
- // If current node has a left child, the next lower node is the
- // node with highest key beneath the left child.
- Cur = getMax(Cur->getLeftChild());
- }
- else if (Cur->isRightChild())
- {
- // No left child? Well if current node is a right child then
- // the next lower node is the parent
- Cur = Cur->getParent();
- }
- else
- {
- // Current node neither is right child nor has a left child.
- // It is either left child or root
- // The next higher node is the parent of the first non-left
- // child (i.e. either a right child or the root) up in the
- // hierarchy. Root's parent is 0.
- while(Cur->isLeftChild())
- Cur = Cur->getParent();
- Cur = Cur->getParent();
- }
- }
- Node* Root;
- Node* Cur;
- }; // Iterator
- //! Const Iterator
- class ConstIterator
- {
- friend class Iterator;
- public:
- ConstIterator() : Root(0), Cur(0) {}
- // Constructor(Node*)
- ConstIterator(const Node* root) : Root(root)
- {
- reset();
- }
- // Constructor(Iterator)
- ConstIterator(const Iterator& src) : Root(src.Root), Cur(src.Cur) {}
- void reset(bool atLowest=true)
- {
- if (atLowest)
- Cur = getMin(Root);
- else
- Cur = getMax(Root);
- }
- bool atEnd() const
- {
- return Cur==0;
- }
- const Node* getNode() const
- {
- return Cur;
- }
- void operator++(int)
- {
- inc();
- }
- void operator--(int)
- {
- dec();
- }
- const Node* operator->()
- {
- return getNode();
- }
- const Node& operator*()
- {
- IRR_DEBUG_BREAK_IF(atEnd()) // access violation
- return *Cur;
- }
- private:
- const Node* getMin(const Node* n) const
- {
- while(n && n->getLeftChild())
- n = n->getLeftChild();
- return n;
- }
- const Node* getMax(const Node* n) const
- {
- while(n && n->getRightChild())
- n = n->getRightChild();
- return n;
- }
- void inc()
- {
- // Already at end?
- if (Cur==0)
- return;
- if (Cur->getRightChild())
- {
- // If current node has a right child, the next higher node is the
- // node with lowest key beneath the right child.
- Cur = getMin(Cur->getRightChild());
- }
- else if (Cur->isLeftChild())
- {
- // No right child? Well if current node is a left child then
- // the next higher node is the parent
- Cur = Cur->getParent();
- }
- else
- {
- // Current node neither is left child nor has a right child.
- // It is either right child or root
- // The next higher node is the parent of the first non-right
- // child (i.e. either a left child or the root) up in the
- // hierarchy. Root's parent is 0.
- while(Cur->isRightChild())
- Cur = Cur->getParent();
- Cur = Cur->getParent();
- }
- }
- void dec()
- {
- // Already at end?
- if (Cur==0)
- return;
- if (Cur->getLeftChild())
- {
- // If current node has a left child, the next lower node is the
- // node with highest key beneath the left child.
- Cur = getMax(Cur->getLeftChild());
- }
- else if (Cur->isRightChild())
- {
- // No left child? Well if current node is a right child then
- // the next lower node is the parent
- Cur = Cur->getParent();
- }
- else
- {
- // Current node neither is right child nor has a left child.
- // It is either left child or root
- // The next higher node is the parent of the first non-left
- // child (i.e. either a right child or the root) up in the
- // hierarchy. Root's parent is 0.
- while(Cur->isLeftChild())
- Cur = Cur->getParent();
- Cur = Cur->getParent();
- }
- }
- const Node* Root;
- const Node* Cur;
- }; // ConstIterator
- //! Parent First Iterator.
- /** Traverses the tree from top to bottom. Typical usage is
- when storing the tree structure, because when reading it
- later (and inserting elements) the tree structure will
- be the same. */
- class ParentFirstIterator
- {
- public:
- ParentFirstIterator() : Root(0), Cur(0) {}
- explicit ParentFirstIterator(Node* root) : Root(root), Cur(0)
- {
- reset();
- }
- void reset()
- {
- Cur = Root;
- }
- bool atEnd() const
- {
- return Cur==0;
- }
- Node* getNode()
- {
- return Cur;
- }
- void operator++(int)
- {
- inc();
- }
- Node* operator -> ()
- {
- return getNode();
- }
- Node& operator* ()
- {
- IRR_DEBUG_BREAK_IF(atEnd()) // access violation
- return *getNode();
- }
- private:
- void inc()
- {
- // Already at end?
- if (Cur==0)
- return;
- // First we try down to the left
- if (Cur->getLeftChild())
- {
- Cur = Cur->getLeftChild();
- }
- else if (Cur->getRightChild())
- {
- // No left child? The we go down to the right.
- Cur = Cur->getRightChild();
- }
- else
- {
- // No children? Move up in the hierarchy until
- // we either reach 0 (and are finished) or
- // find a right uncle.
- while (Cur!=0)
- {
- // But if parent is left child and has a right "uncle" the parent
- // has already been processed but the uncle hasn't. Move to
- // the uncle.
- if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
- {
- Cur = Cur->getParent()->getRightChild();
- return;
- }
- Cur = Cur->getParent();
- }
- }
- }
- Node* Root;
- Node* Cur;
- }; // ParentFirstIterator
- //! Parent Last Iterator
- /** Traverse the tree from bottom to top.
- Typical usage is when deleting all elements in the tree
- because you must delete the children before you delete
- their parent. */
- class ParentLastIterator
- {
- public:
- ParentLastIterator() : Root(0), Cur(0) {}
- explicit ParentLastIterator(Node* root) : Root(root), Cur(0)
- {
- reset();
- }
- void reset()
- {
- Cur = getMin(Root);
- }
- bool atEnd() const
- {
- return Cur==0;
- }
- Node* getNode()
- {
- return Cur;
- }
- void operator++(int)
- {
- inc();
- }
- Node* operator -> ()
- {
- return getNode();
- }
- Node& operator* ()
- {
- IRR_DEBUG_BREAK_IF(atEnd()) // access violation
- return *getNode();
- }
- private:
- Node* getMin(Node* n)
- {
- while(n!=0 && (n->getLeftChild()!=0 || n->getRightChild()!=0))
- {
- if (n->getLeftChild())
- n = n->getLeftChild();
- else
- n = n->getRightChild();
- }
- return n;
- }
- void inc()
- {
- // Already at end?
- if (Cur==0)
- return;
- // Note: Starting point is the node as far down to the left as possible.
- // If current node has an uncle to the right, go to the
- // node as far down to the left from the uncle as possible
- // else just go up a level to the parent.
- if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
- {
- Cur = getMin(Cur->getParent()->getRightChild());
- }
- else
- Cur = Cur->getParent();
- }
- Node* Root;
- Node* Cur;
- }; // ParentLastIterator
- // AccessClass is a temporary class used with the [] operator.
- // It makes it possible to have different behavior in situations like:
- // myTree["Foo"] = 32;
- // If "Foo" already exists update its value else insert a new element.
- // int i = myTree["Foo"]
- // If "Foo" exists return its value.
- class AccessClass
- {
- // Let map be the only one who can instantiate this class.
- friend class map<KeyType, ValueType>;
- public:
- // Assignment operator. Handles the myTree["Foo"] = 32; situation
- void operator=(const ValueType& value)
- {
- // Just use the Set method, it handles already exist/not exist situation
- Tree.set(Key,value);
- }
- // ValueType operator
- operator ValueType()
- {
- Node* node = Tree.find(Key);
- // Not found
- IRR_DEBUG_BREAK_IF(node==0) // access violation
- return node->getValue();
- }
- private:
- AccessClass(map& tree, const KeyType& key) : Tree(tree), Key(key) {}
- AccessClass();
- map& Tree;
- const KeyType& Key;
- }; // AccessClass
- // Constructor.
- map() : Root(0), Size(0) {}
- // Destructor
- ~map()
- {
- clear();
- }
- // typedefs
- typedef KeyType key_type;
- typedef ValueType value_type;
- typedef u32 size_type;
- //------------------------------
- // Public Commands
- //------------------------------
- //! Inserts a new node into the tree
- /** \param keyNew: the index for this value
- \param v: the value to insert
- \return True if successful, false if it fails (already exists) */
- bool insert(const KeyType& keyNew, const ValueType& v)
- {
- // First insert node the "usual" way (no fancy balance logic yet)
- Node* newNode = new Node(keyNew,v);
- if (!insert(newNode))
- {
- delete newNode;
- return false;
- }
- // Then attend a balancing party
- while (!newNode->isRoot() && (newNode->getParent()->isRed()))
- {
- if (newNode->getParent()->isLeftChild())
- {
- // If newNode is a left child, get its right 'uncle'
- Node* newNodesUncle = newNode->getParent()->getParent()->getRightChild();
- if ( newNodesUncle!=0 && newNodesUncle->isRed())
- {
- // case 1 - change the colors
- newNode->getParent()->setBlack();
- newNodesUncle->setBlack();
- newNode->getParent()->getParent()->setRed();
- // Move newNode up the tree
- newNode = newNode->getParent()->getParent();
- }
- else
- {
- // newNodesUncle is a black node
- if ( newNode->isRightChild())
- {
- // and newNode is to the right
- // case 2 - move newNode up and rotate
- newNode = newNode->getParent();
- rotateLeft(newNode);
- }
- // case 3
- newNode->getParent()->setBlack();
- newNode->getParent()->getParent()->setRed();
- rotateRight(newNode->getParent()->getParent());
- }
- }
- else
- {
- // If newNode is a right child, get its left 'uncle'
- Node* newNodesUncle = newNode->getParent()->getParent()->getLeftChild();
- if ( newNodesUncle!=0 && newNodesUncle->isRed())
- {
- // case 1 - change the colors
- newNode->getParent()->setBlack();
- newNodesUncle->setBlack();
- newNode->getParent()->getParent()->setRed();
- // Move newNode up the tree
- newNode = newNode->getParent()->getParent();
- }
- else
- {
- // newNodesUncle is a black node
- if (newNode->isLeftChild())
- {
- // and newNode is to the left
- // case 2 - move newNode up and rotate
- newNode = newNode->getParent();
- rotateRight(newNode);
- }
- // case 3
- newNode->getParent()->setBlack();
- newNode->getParent()->getParent()->setRed();
- rotateLeft(newNode->getParent()->getParent());
- }
- }
- }
- // Color the root black
- Root->setBlack();
- return true;
- }
- //! Replaces the value if the key already exists, otherwise inserts a new element.
- /** \param k The index for this value
- \param v The new value of */
- void set(const KeyType& k, const ValueType& v)
- {
- Node* p = find(k);
- if (p)
- p->setValue(v);
- else
- insert(k,v);
- }
- //! Removes a node from the tree and returns it.
- /** The returned node must be deleted by the user
- \param k the key to remove
- \return A pointer to the node, or 0 if not found */
- Node* delink(const KeyType& k)
- {
- Node* p = find(k);
- if (p == 0)
- return 0;
- // Rotate p down to the left until it has no right child, will get there
- // sooner or later.
- while(p->getRightChild())
- {
- // "Pull up my right child and let it knock me down to the left"
- rotateLeft(p);
- }
- // p now has no right child but might have a left child
- Node* left = p->getLeftChild();
- // Let p's parent point to p's child instead of point to p
- if (p->isLeftChild())
- p->getParent()->setLeftChild(left);
- else if (p->isRightChild())
- p->getParent()->setRightChild(left);
- else
- {
- // p has no parent => p is the root.
- // Let the left child be the new root.
- setRoot(left);
- }
- // p is now gone from the tree in the sense that
- // no one is pointing at it, so return it.
- --Size;
- return p;
- }
- //! Removes a node from the tree and deletes it.
- /** \return True if the node was found and deleted */
- bool remove(const KeyType& k)
- {
- Node* p = find(k);
- return remove(p);
- }
- //! Removes a node from the tree and deletes it.
- /** \return True if the node was found and deleted */
- bool remove(Node* p)
- {
- if (p == 0)
- {
- return false;
- }
- // Rotate p down to the left until it has no right child, will get there
- // sooner or later.
- while(p->getRightChild())
- {
- // "Pull up my right child and let it knock me down to the left"
- rotateLeft(p);
- }
- // p now has no right child but might have a left child
- Node* left = p->getLeftChild();
- // Let p's parent point to p's child instead of point to p
- if (p->isLeftChild())
- p->getParent()->setLeftChild(left);
- else if (p->isRightChild())
- p->getParent()->setRightChild(left);
- else
- {
- // p has no parent => p is the root.
- // Let the left child be the new root.
- setRoot(left);
- }
- // p is now gone from the tree in the sense that
- // no one is pointing at it. Let's get rid of it.
- delete p;
- --Size;
- return true;
- }
- //! Clear the entire tree
- void clear()
- {
- ParentLastIterator i(getParentLastIterator());
- while(!i.atEnd())
- {
- Node* p = i.getNode();
- i++; // Increment it before it is deleted
- // else iterator will get quite confused.
- delete p;
- }
- Root = 0;
- Size= 0;
- }
- //! Is the tree empty?
- //! \return Returns true if empty, false if not
- bool empty() const
- {
- return Root == 0;
- }
- //! \deprecated Use empty() instead. This method may be removed by Irrlicht 1.9
- IRR_DEPRECATED bool isEmpty() const
- {
- return empty();
- }
- //! Search for a node with the specified key.
- //! \param keyToFind: The key to find
- //! \return Returns 0 if node couldn't be found.
- Node* find(const KeyType& keyToFind) const
- {
- Node* pNode = Root;
- while(pNode!=0)
- {
- const KeyType& key=pNode->getKey();
- if (keyToFind == key)
- return pNode;
- else if (keyToFind < key)
- pNode = pNode->getLeftChild();
- else //keyToFind > key
- pNode = pNode->getRightChild();
- }
- return 0;
- }
- //! Gets the root element.
- //! \return Returns a pointer to the root node, or
- //! 0 if the tree is empty.
- Node* getRoot() const
- {
- return Root;
- }
- //! Returns the number of nodes in the tree.
- u32 size() const
- {
- return Size;
- }
- //! Swap the content of this map container with the content of another map
- /** Afterwards this object will contain the content of the other object and the other
- object will contain the content of this object. Iterators will afterwards be valid for
- the swapped object.
- \param other Swap content with this object */
- void swap(map<KeyType, ValueType>& other)
- {
- core::swap(Root, other.Root);
- core::swap(Size, other.Size);
- }
- //------------------------------
- // Public Iterators
- //------------------------------
- //! Returns an iterator
- Iterator getIterator() const
- {
- Iterator it(getRoot());
- return it;
- }
- //! Returns a Constiterator
- ConstIterator getConstIterator() const
- {
- const Iterator it(getRoot());
- return it;
- }
- //! Returns a ParentFirstIterator.
- //! Traverses the tree from top to bottom. Typical usage is
- //! when storing the tree structure, because when reading it
- //! later (and inserting elements) the tree structure will
- //! be the same.
- ParentFirstIterator getParentFirstIterator() const
- {
- ParentFirstIterator it(getRoot());
- return it;
- }
- //! Returns a ParentLastIterator to traverse the tree from
- //! bottom to top.
- //! Typical usage is when deleting all elements in the tree
- //! because you must delete the children before you delete
- //! their parent.
- ParentLastIterator getParentLastIterator() const
- {
- ParentLastIterator it(getRoot());
- return it;
- }
- //------------------------------
- // Public Operators
- //------------------------------
- //! operator [] for access to elements
- /** for example myMap["key"] */
- AccessClass operator[](const KeyType& k)
- {
- return AccessClass(*this, k);
- }
- private:
- //------------------------------
- // Disabled methods
- //------------------------------
- // Copy constructor and assignment operator deliberately
- // defined but not implemented. The tree should never be
- // copied, pass along references to it instead.
- explicit map(const map& src);
- map& operator = (const map& src);
- //! Set node as new root.
- /** The node will be set to black, otherwise core dumps may arise
- (patch provided by rogerborg).
- \param newRoot Node which will be the new root
- */
- void setRoot(Node* newRoot)
- {
- Root = newRoot;
- if (Root != 0)
- {
- Root->setParent(0);
- Root->setBlack();
- }
- }
- //! Insert a node into the tree without using any fancy balancing logic.
- /** \return false if that key already exist in the tree. */
- bool insert(Node* newNode)
- {
- bool result=true; // Assume success
- if (Root==0)
- {
- setRoot(newNode);
- Size = 1;
- }
- else
- {
- Node* pNode = Root;
- const KeyType& keyNew = newNode->getKey();
- while (pNode)
- {
- const KeyType& key=pNode->getKey();
- if (keyNew == key)
- {
- result = false;
- pNode = 0;
- }
- else if (keyNew < key)
- {
- if (pNode->getLeftChild() == 0)
- {
- pNode->setLeftChild(newNode);
- pNode = 0;
- }
- else
- pNode = pNode->getLeftChild();
- }
- else // keyNew > key
- {
- if (pNode->getRightChild()==0)
- {
- pNode->setRightChild(newNode);
- pNode = 0;
- }
- else
- {
- pNode = pNode->getRightChild();
- }
- }
- }
- if (result)
- ++Size;
- }
- return result;
- }
- //! Rotate left.
- //! Pull up node's right child and let it knock node down to the left
- void rotateLeft(Node* p)
- {
- Node* right = p->getRightChild();
- p->setRightChild(right->getLeftChild());
- if (p->isLeftChild())
- p->getParent()->setLeftChild(right);
- else if (p->isRightChild())
- p->getParent()->setRightChild(right);
- else
- setRoot(right);
- right->setLeftChild(p);
- }
- //! Rotate right.
- //! Pull up node's left child and let it knock node down to the right
- void rotateRight(Node* p)
- {
- Node* left = p->getLeftChild();
- p->setLeftChild(left->getRightChild());
- if (p->isLeftChild())
- p->getParent()->setLeftChild(left);
- else if (p->isRightChild())
- p->getParent()->setRightChild(left);
- else
- setRoot(left);
- left->setRightChild(p);
- }
- //------------------------------
- // Private Members
- //------------------------------
- Node* Root; // The top node. 0 if empty.
- u32 Size; // Number of nodes in the tree
- };
- } // end namespace core
- } // end namespace irr
- #endif // IRR_MAP_H_INCLUDED
|