123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- // ---------------------------------------------------------------------------
- // This file is part of reSID, a MOS6581 SID emulator engine.
- // Copyright (C) 2004 Dag Lem <resid@nimrod.no>
- //
- // This program is free software; you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation; either version 2 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program; if not, write to the Free Software
- // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- // ---------------------------------------------------------------------------
- #ifndef __SPLINE_H__
- #define __SPLINE_H__
- // Our objective is to construct a smooth interpolating single-valued function
- // y = f(x).
- //
- // Catmull-Rom splines are widely used for interpolation, however these are
- // parametric curves [x(t) y(t) ...] and can not be used to directly calculate
- // y = f(x).
- // For a discussion of Catmull-Rom splines see Catmull, E., and R. Rom,
- // "A Class of Local Interpolating Splines", Computer Aided Geometric Design.
- //
- // Natural cubic splines are single-valued functions, and have been used in
- // several applications e.g. to specify gamma curves for image display.
- // These splines do not afford local control, and a set of linear equations
- // including all interpolation points must be solved before any point on the
- // curve can be calculated. The lack of local control makes the splines
- // more difficult to handle than e.g. Catmull-Rom splines, and real-time
- // interpolation of a stream of data points is not possible.
- // For a discussion of natural cubic splines, see e.g. Kreyszig, E., "Advanced
- // Engineering Mathematics".
- //
- // Our approach is to approximate the properties of Catmull-Rom splines for
- // piecewice cubic polynomials f(x) = ax^3 + bx^2 + cx + d as follows:
- // Each curve segment is specified by four interpolation points,
- // p0, p1, p2, p3.
- // The curve between p1 and p2 must interpolate both p1 and p2, and in addition
- // f'(p1.x) = k1 = (p2.y - p0.y)/(p2.x - p0.x) and
- // f'(p2.x) = k2 = (p3.y - p1.y)/(p3.x - p1.x).
- //
- // The constraints are expressed by the following system of linear equations
- //
- // [ 1 xi xi^2 xi^3 ] [ d ] [ yi ]
- // [ 1 2*xi 3*xi^2 ] * [ c ] = [ ki ]
- // [ 1 xj xj^2 xj^3 ] [ b ] [ yj ]
- // [ 1 2*xj 3*xj^2 ] [ a ] [ kj ]
- //
- // Solving using Gaussian elimination and back substitution, setting
- // dy = yj - yi, dx = xj - xi, we get
- //
- // a = ((ki + kj) - 2*dy/dx)/(dx*dx);
- // b = ((kj - ki)/dx - 3*(xi + xj)*a)/2;
- // c = ki - (3*xi*a + 2*b)*xi;
- // d = yi - ((xi*a + b)*xi + c)*xi;
- //
- // Having calculated the coefficients of the cubic polynomial we have the
- // choice of evaluation by brute force
- //
- // for (x = x1; x <= x2; x += res) {
- // y = ((a*x + b)*x + c)*x + d;
- // plot(x, y);
- // }
- //
- // or by forward differencing
- //
- // y = ((a*x1 + b)*x1 + c)*x1 + d;
- // dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
- // d2y = (6*a*(x1 + res) + 2*b)*res*res;
- // d3y = 6*a*res*res*res;
- //
- // for (x = x1; x <= x2; x += res) {
- // plot(x, y);
- // y += dy; dy += d2y; d2y += d3y;
- // }
- //
- // See Foley, Van Dam, Feiner, Hughes, "Computer Graphics, Principles and
- // Practice" for a discussion of forward differencing.
- //
- // If we have a set of interpolation points p0, ..., pn, we may specify
- // curve segments between p0 and p1, and between pn-1 and pn by using the
- // following constraints:
- // f''(p0.x) = 0 and
- // f''(pn.x) = 0.
- //
- // Substituting the results for a and b in
- //
- // 2*b + 6*a*xi = 0
- //
- // we get
- //
- // ki = (3*dy/dx - kj)/2;
- //
- // or by substituting the results for a and b in
- //
- // 2*b + 6*a*xj = 0
- //
- // we get
- //
- // kj = (3*dy/dx - ki)/2;
- //
- // Finally, if we have only two interpolation points, the cubic polynomial
- // will degenerate to a straight line if we set
- //
- // ki = kj = dy/dx;
- //
- #if SPLINE_BRUTE_FORCE
- #define interpolate_segment interpolate_brute_force
- #else
- #define interpolate_segment interpolate_forward_difference
- #endif
- // ----------------------------------------------------------------------------
- // Calculation of coefficients.
- // ----------------------------------------------------------------------------
- inline
- void cubic_coefficients(double x1, double y1, double x2, double y2,
- double k1, double k2,
- double& a, double& b, double& c, double& d)
- {
- double dx = x2 - x1, dy = y2 - y1;
- a = ((k1 + k2) - 2*dy/dx)/(dx*dx);
- b = ((k2 - k1)/dx - 3*(x1 + x2)*a)/2;
- c = k1 - (3*x1*a + 2*b)*x1;
- d = y1 - ((x1*a + b)*x1 + c)*x1;
- }
- // ----------------------------------------------------------------------------
- // Evaluation of cubic polynomial by brute force.
- // ----------------------------------------------------------------------------
- template<class PointPlotter>
- inline
- void interpolate_brute_force(double x1, double y1, double x2, double y2,
- double k1, double k2,
- PointPlotter plot, double res)
- {
- double a, b, c, d;
- cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
-
- // Calculate each point.
- for (double x = x1; x <= x2; x += res) {
- double y = ((a*x + b)*x + c)*x + d;
- plot(x, y);
- }
- }
- // ----------------------------------------------------------------------------
- // Evaluation of cubic polynomial by forward differencing.
- // ----------------------------------------------------------------------------
- template<class PointPlotter>
- inline
- void interpolate_forward_difference(double x1, double y1, double x2, double y2,
- double k1, double k2,
- PointPlotter plot, double res)
- {
- double a, b, c, d;
- cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
-
- double y = ((a*x1 + b)*x1 + c)*x1 + d;
- double dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
- double d2y = (6*a*(x1 + res) + 2*b)*res*res;
- double d3y = 6*a*res*res*res;
-
- // Calculate each point.
- for (double x = x1; x <= x2; x += res) {
- plot(x, y);
- y += dy; dy += d2y; d2y += d3y;
- }
- }
- template<class PointIter>
- inline
- double x(PointIter p)
- {
- return (*p)[0];
- }
- template<class PointIter>
- inline
- double y(PointIter p)
- {
- return (*p)[1];
- }
- // ----------------------------------------------------------------------------
- // Evaluation of complete interpolating function.
- // Note that since each curve segment is controlled by four points, the
- // end points will not be interpolated. If extra control points are not
- // desirable, the end points can simply be repeated to ensure interpolation.
- // Note also that points of non-differentiability and discontinuity can be
- // introduced by repeating points.
- // ----------------------------------------------------------------------------
- template<class PointIter, class PointPlotter>
- inline
- void interpolate(PointIter p0, PointIter pn, PointPlotter plot, double res)
- {
- double k1, k2;
- // Set up points for first curve segment.
- PointIter p1 = p0; ++p1;
- PointIter p2 = p1; ++p2;
- PointIter p3 = p2; ++p3;
- // Draw each curve segment.
- for (; p2 != pn; ++p0, ++p1, ++p2, ++p3) {
- // p1 and p2 equal; single point.
- if (x(p1) == x(p2)) {
- continue;
- }
- // Both end points repeated; straight line.
- if (x(p0) == x(p1) && x(p2) == x(p3)) {
- k1 = k2 = (y(p2) - y(p1))/(x(p2) - x(p1));
- }
- // p0 and p1 equal; use f''(x1) = 0.
- else if (x(p0) == x(p1)) {
- k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
- k1 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k2)/2;
- }
- // p2 and p3 equal; use f''(x2) = 0.
- else if (x(p2) == x(p3)) {
- k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
- k2 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k1)/2;
- }
- // Normal curve.
- else {
- k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
- k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
- }
- interpolate_segment(x(p1), y(p1), x(p2), y(p2), k1, k2, plot, res);
- }
- }
- // ----------------------------------------------------------------------------
- // Class for plotting integers into an array.
- // ----------------------------------------------------------------------------
- template<class F>
- class PointPlotter
- {
- protected:
- F* f;
- public:
- PointPlotter(F* arr) : f(arr)
- {
- }
- void operator ()(double x, double y)
- {
- // Clamp negative values to zero.
- if (y < 0) {
- y = 0;
- }
- f[F(x)] = F(y);
- }
- };
- #endif // not __SPLINE_H__
|