123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- /*
- * lmms_math.h - defines math functions
- *
- * Copyright (c) 2004-2008 Tobias Doerffel <tobydox/at/users.sourceforge.net>
- *
- * This file is part of LMMS - https://lmms.io
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with this program (see COPYING); if not, write to the
- * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
- * Boston, MA 02110-1301 USA.
- *
- */
- #ifndef LMMS_MATH_H
- #define LMMS_MATH_H
- #include <stdint.h>
- #include "lmms_constants.h"
- #include "lmmsconfig.h"
- #include <QtCore/QtGlobal>
- #include <cmath>
- using namespace std;
- #ifndef __GLIBC__
- #ifndef isnanf
- #define isnanf(x) isnan(x)
- #endif
- #ifndef isinff
- #define isinff(x) isinf(x)
- #endif
- #ifndef _isnanf
- #define _isnanf(x) isnan(x)
- #endif
- #ifndef _isinff
- #define _isinff(x) isinf(x)
- #endif
- #ifndef exp10
- #define exp10(x) pow( 10.0, x )
- #endif
- #ifndef exp10f
- #define exp10f(x) powf( 10.0f, x )
- #endif
- #endif
- #ifdef __INTEL_COMPILER
- static inline float absFraction( const float _x )
- {
- return( _x - ( _x >= 0.0f ? floorf( _x ) : floorf( _x ) - 1 ) );
- }
- static inline float fraction( const float _x )
- {
- return( _x - floorf( _x ) );
- }
- #else
- static inline float absFraction( const float _x )
- {
- return( _x - ( _x >= 0.0f ? static_cast<int>( _x ) :
- static_cast<int>( _x ) - 1 ) );
- }
- static inline float fraction( const float _x )
- {
- return( _x - static_cast<int>( _x ) );
- }
- #if 0
- // SSE3-version
- static inline float absFraction( float _x )
- {
- unsigned int tmp;
- asm(
- "fld %%st\n\t"
- "fisttp %1\n\t"
- "fild %1\n\t"
- "ftst\n\t"
- "sahf\n\t"
- "jae 1f\n\t"
- "fld1\n\t"
- "fsubrp %%st, %%st(1)\n\t"
- "1:\n\t"
- "fsubrp %%st, %%st(1)"
- : "+t"( _x ), "=m"( tmp )
- :
- : "st(1)", "cc" );
- return( _x );
- }
- static inline float absFraction( float _x )
- {
- unsigned int tmp;
- asm(
- "fld %%st\n\t"
- "fisttp %1\n\t"
- "fild %1\n\t"
- "fsubrp %%st, %%st(1)"
- : "+t"( _x ), "=m"( tmp )
- :
- : "st(1)" );
- return( _x );
- }
- #endif
- #endif
- #define FAST_RAND_MAX 32767
- static inline int fast_rand()
- {
- static unsigned long next = 1;
- next = next * 1103515245 + 12345;
- return( (unsigned)( next / 65536 ) % 32768 );
- }
- static inline double fastRand( double range )
- {
- static const double fast_rand_ratio = 1.0 / FAST_RAND_MAX;
- return fast_rand() * range * fast_rand_ratio;
- }
- static inline float fastRandf( float range )
- {
- static const float fast_rand_ratio = 1.0f / FAST_RAND_MAX;
- return fast_rand() * range * fast_rand_ratio;
- }
- //! @brief Takes advantage of fmal() function if present in hardware
- static inline long double fastFmal( long double a, long double b, long double c )
- {
- #ifdef FP_FAST_FMAL
- #ifdef __clang__
- return fma( a, b, c );
- #else
- return fmal( a, b, c );
- #endif
- #else
- return a * b + c;
- #endif
- }
- //! @brief Takes advantage of fmaf() function if present in hardware
- static inline float fastFmaf( float a, float b, float c )
- {
- #ifdef FP_FAST_FMAF
- #ifdef __clang__
- return fma( a, b, c );
- #else
- return fmaf( a, b, c );
- #endif
- #else
- return a * b + c;
- #endif
- }
- //! @brief Takes advantage of fma() function if present in hardware
- static inline double fastFma( double a, double b, double c )
- {
- #ifdef FP_FAST_FMA
- return fma( a, b, c );
- #else
- return a * b + c;
- #endif
- }
- // source: http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
- static inline double fastPow( double a, double b )
- {
- union
- {
- double d;
- int32_t x[2];
- } u = { a };
- u.x[1] = static_cast<int32_t>( b * ( u.x[1] - 1072632447 ) + 1072632447 );
- u.x[0] = 0;
- return u.d;
- }
- // sinc function
- static inline double sinc( double _x )
- {
- return _x == 0.0 ? 1.0 : sin( F_PI * _x ) / ( F_PI * _x );
- }
- //! @brief Exponential function that deals with negative bases
- static inline float signedPowf( float v, float e )
- {
- return v < 0
- ? powf( -v, e ) * -1.0f
- : powf( v, e );
- }
- //! @brief Scales @value from linear to logarithmic.
- //! Value should be within [0,1]
- static inline float logToLinearScale( float min, float max, float value )
- {
- if( min < 0 )
- {
- const float mmax = qMax( qAbs( min ), qAbs( max ) );
- const float val = value * ( max - min ) + min;
- float result = signedPowf( val / mmax, F_E ) * mmax;
- return isnan( result ) ? 0 : result;
- }
- float result = powf( value, F_E ) * ( max - min ) + min;
- return isnan( result ) ? 0 : result;
- }
- //! @brief Scales value from logarithmic to linear. Value should be in min-max range.
- static inline float linearToLogScale( float min, float max, float value )
- {
- static const float EXP = 1.0f / F_E;
- const float valueLimited = qBound( min, value, max);
- const float val = ( valueLimited - min ) / ( max - min );
- if( min < 0 )
- {
- const float mmax = qMax( qAbs( min ), qAbs( max ) );
- float result = signedPowf( valueLimited / mmax, EXP ) * mmax;
- return isnan( result ) ? 0 : result;
- }
- float result = powf( val, EXP ) * ( max - min ) + min;
- return isnan( result ) ? 0 : result;
- }
- //! @brief Converts linear amplitude (0-1.0) to dBFS scale. Handles zeroes as -inf.
- //! @param amp Linear amplitude, where 1.0 = 0dBFS.
- //! @return Amplitude in dBFS. -inf for 0 amplitude.
- static inline float safeAmpToDbfs( float amp )
- {
- return amp == 0.0f
- ? -INFINITY
- : log10f( amp ) * 20.0f;
- }
- //! @brief Converts dBFS-scale to linear amplitude with 0dBFS = 1.0. Handles infinity as zero.
- //! @param dbfs The dBFS value to convert: all infinites are treated as -inf and result in 0
- //! @return Linear amplitude
- static inline float safeDbfsToAmp( float dbfs )
- {
- return isinff( dbfs )
- ? 0.0f
- : exp10f( dbfs * 0.05f );
- }
- //! @brief Converts linear amplitude (>0-1.0) to dBFS scale.
- //! @param amp Linear amplitude, where 1.0 = 0dBFS. ** Must be larger than zero! **
- //! @return Amplitude in dBFS.
- static inline float ampToDbfs( float amp )
- {
- return log10f( amp ) * 20.0f;
- }
- //! @brief Converts dBFS-scale to linear amplitude with 0dBFS = 1.0
- //! @param dbfs The dBFS value to convert. ** Must be a real number - not inf/nan! **
- //! @return Linear amplitude
- static inline float dbfsToAmp( float dbfs )
- {
- return exp10f( dbfs * 0.05f );
- }
- //! returns 1.0f if val >= 0.0f, -1.0 else
- static inline float sign( float val )
- {
- return val >= 0.0f ? 1.0f : -1.0f;
- }
- //! if val >= 0.0f, returns sqrtf(val), else: -sqrtf(-val)
- static inline float sqrt_neg( float val )
- {
- return sqrtf( fabs( val ) ) * sign( val );
- }
- // fast approximation of square root
- static inline float fastSqrt( float n )
- {
- union
- {
- int32_t i;
- float f;
- } u;
- u.f = n;
- u.i = ( u.i + ( 127 << 23 ) ) >> 1;
- return u.f;
- }
- //! returns value furthest from zero
- template<class T>
- static inline T absMax( T a, T b )
- {
- return qAbs<T>(a) > qAbs<T>(b) ? a : b;
- }
- //! returns value nearest to zero
- template<class T>
- static inline T absMin( T a, T b )
- {
- return qAbs<T>(a) < qAbs<T>(b) ? a : b;
- }
- #endif
|