BasicFilters.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. * BasicFilters.h - simple but powerful filter-class with most used filters
  3. *
  4. * original file by ???
  5. * modified and enhanced by Tobias Doerffel
  6. *
  7. * Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
  8. * adapted & modified for use in LMMS
  9. *
  10. * Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
  11. *
  12. * This file is part of LMMS - https://lmms.io
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public
  16. * License as published by the Free Software Foundation; either
  17. * version 2 of the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public
  25. * License along with this program (see COPYING); if not, write to the
  26. * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
  27. * Boston, MA 02110-1301 USA.
  28. *
  29. */
  30. #ifndef BASIC_FILTERS_H
  31. #define BASIC_FILTERS_H
  32. #ifndef __USE_XOPEN
  33. #define __USE_XOPEN
  34. #endif
  35. #include <math.h>
  36. #include "lmms_basics.h"
  37. #include "lmms_constants.h"
  38. #include "interpolation.h"
  39. #include "MemoryManager.h"
  40. template<ch_cnt_t CHANNELS=DEFAULT_CHANNELS> class BasicFilters;
  41. template<ch_cnt_t CHANNELS>
  42. class LinkwitzRiley
  43. {
  44. MM_OPERATORS
  45. public:
  46. LinkwitzRiley( float sampleRate )
  47. {
  48. m_sampleRate = sampleRate;
  49. clearHistory();
  50. }
  51. virtual ~LinkwitzRiley() {}
  52. inline void clearHistory()
  53. {
  54. for( int i = 0; i < CHANNELS; ++i )
  55. {
  56. m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
  57. }
  58. }
  59. inline void setSampleRate( float sampleRate )
  60. {
  61. m_sampleRate = sampleRate;
  62. }
  63. inline void setCoeffs( float freq )
  64. {
  65. // wc
  66. const double wc = D_2PI * freq;
  67. const double wc2 = wc * wc;
  68. const double wc3 = wc2 * wc;
  69. m_wc4 = wc2 * wc2;
  70. // k
  71. const double k = wc / tan( D_PI * freq / m_sampleRate );
  72. const double k2 = k * k;
  73. const double k3 = k2 * k;
  74. m_k4 = k2 * k2;
  75. // a
  76. static const double sqrt2 = sqrt( 2.0 );
  77. const double sq_tmp1 = sqrt2 * wc3 * k;
  78. const double sq_tmp2 = sqrt2 * wc * k3;
  79. m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
  80. // b
  81. m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
  82. m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
  83. m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
  84. m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
  85. }
  86. inline void setLowpass( float freq )
  87. {
  88. setCoeffs( freq );
  89. m_a0 = m_wc4 * m_a;
  90. m_a1 = 4.0 * m_a0;
  91. m_a2 = 6.0 * m_a0;
  92. }
  93. inline void setHighpass( float freq )
  94. {
  95. setCoeffs( freq );
  96. m_a0 = m_k4 * m_a;
  97. m_a1 = -4.0 * m_a0;
  98. m_a2 = 6.0 * m_a0;
  99. }
  100. inline float update( float in, ch_cnt_t ch )
  101. {
  102. const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
  103. ( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
  104. const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
  105. ( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
  106. m_z4[ch] = m_z3[ch];
  107. m_z3[ch] = m_z2[ch];
  108. m_z2[ch] = m_z1[ch];
  109. m_z1[ch] = x;
  110. return y;
  111. }
  112. private:
  113. float m_sampleRate;
  114. double m_wc4;
  115. double m_k4;
  116. double m_a, m_a0, m_a1, m_a2;
  117. double m_b1, m_b2, m_b3, m_b4;
  118. typedef double frame[CHANNELS];
  119. frame m_z1, m_z2, m_z3, m_z4;
  120. };
  121. typedef LinkwitzRiley<2> StereoLinkwitzRiley;
  122. template<ch_cnt_t CHANNELS>
  123. class BiQuad
  124. {
  125. MM_OPERATORS
  126. public:
  127. BiQuad()
  128. {
  129. clearHistory();
  130. }
  131. virtual ~BiQuad() {}
  132. inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
  133. {
  134. m_a1 = a1;
  135. m_a2 = a2;
  136. m_b0 = b0;
  137. m_b1 = b1;
  138. m_b2 = b2;
  139. }
  140. inline void clearHistory()
  141. {
  142. for( int i = 0; i < CHANNELS; ++i )
  143. {
  144. m_z1[i] = 0.0f;
  145. m_z2[i] = 0.0f;
  146. }
  147. }
  148. inline float update( float in, ch_cnt_t ch )
  149. {
  150. // biquad filter in transposed form
  151. const float out = m_z1[ch] + m_b0 * in;
  152. m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
  153. m_z2[ch] = m_b2 * in - m_a2 * out;
  154. return out;
  155. }
  156. private:
  157. float m_a1, m_a2, m_b0, m_b1, m_b2;
  158. float m_z1 [CHANNELS], m_z2 [CHANNELS];
  159. friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
  160. };
  161. typedef BiQuad<2> StereoBiQuad;
  162. template<ch_cnt_t CHANNELS>
  163. class OnePole
  164. {
  165. MM_OPERATORS
  166. public:
  167. OnePole()
  168. {
  169. m_a0 = 1.0;
  170. m_b1 = 0.0;
  171. for( int i = 0; i < CHANNELS; ++i )
  172. {
  173. m_z1[i] = 0.0;
  174. }
  175. }
  176. virtual ~OnePole() {}
  177. inline void setCoeffs( float a0, float b1 )
  178. {
  179. m_a0 = a0;
  180. m_b1 = b1;
  181. }
  182. inline float update( float s, ch_cnt_t ch )
  183. {
  184. if( qAbs( s ) < 1.0e-10f && qAbs( m_z1[ch] ) < 1.0e-10f ) return 0.0f;
  185. return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
  186. }
  187. private:
  188. float m_a0, m_b1;
  189. float m_z1 [CHANNELS];
  190. };
  191. typedef OnePole<2> StereoOnePole;
  192. template<ch_cnt_t CHANNELS>
  193. class BasicFilters
  194. {
  195. MM_OPERATORS
  196. public:
  197. enum FilterTypes
  198. {
  199. LowPass,
  200. HiPass,
  201. BandPass_CSG,
  202. BandPass_CZPG,
  203. Notch,
  204. AllPass,
  205. Moog,
  206. DoubleLowPass,
  207. Lowpass_RC12,
  208. Bandpass_RC12,
  209. Highpass_RC12,
  210. Lowpass_RC24,
  211. Bandpass_RC24,
  212. Highpass_RC24,
  213. Formantfilter,
  214. DoubleMoog,
  215. Lowpass_SV,
  216. Bandpass_SV,
  217. Highpass_SV,
  218. Notch_SV,
  219. FastFormant,
  220. Tripole,
  221. NumFilters
  222. };
  223. static inline float minFreq()
  224. {
  225. return( 5.0f );
  226. }
  227. static inline float minQ()
  228. {
  229. return( 0.01f );
  230. }
  231. inline void setFilterType( const int _idx )
  232. {
  233. m_doubleFilter = _idx == DoubleLowPass || _idx == DoubleMoog;
  234. if( !m_doubleFilter )
  235. {
  236. m_type = static_cast<FilterTypes>( _idx );
  237. return;
  238. }
  239. // Double lowpass mode, backwards-compat for the goofy
  240. // Add-NumFilters to signify doubleFilter stuff
  241. m_type = _idx == DoubleLowPass
  242. ? LowPass
  243. : Moog;
  244. if( m_subFilter == nullptr )
  245. {
  246. m_subFilter = new BasicFilters<CHANNELS>(
  247. static_cast<sample_rate_t>(
  248. m_sampleRate ) );
  249. }
  250. m_subFilter->m_type = m_type;
  251. }
  252. inline BasicFilters( const sample_rate_t _sample_rate ) :
  253. m_doubleFilter( false ),
  254. m_sampleRate( (float) _sample_rate ),
  255. m_sampleRatio( 1.0f / m_sampleRate ),
  256. m_subFilter( nullptr )
  257. {
  258. clearHistory();
  259. }
  260. inline ~BasicFilters()
  261. {
  262. delete m_subFilter;
  263. }
  264. inline void clearHistory()
  265. {
  266. // reset in/out history for biquads
  267. m_biQuad.clearHistory();
  268. // reset in/out history
  269. for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
  270. {
  271. // reset in/out history for moog-filter
  272. m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
  273. m_oldx[_chnl] = m_oldy1[_chnl] =
  274. m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
  275. // tripole
  276. m_last[_chnl] = 0.0f;
  277. // reset in/out history for RC-filters
  278. m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
  279. m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
  280. for(int i=0; i<6; i++)
  281. m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
  282. // reset in/out history for SV-filters
  283. m_delay1[_chnl] = 0.0f;
  284. m_delay2[_chnl] = 0.0f;
  285. m_delay3[_chnl] = 0.0f;
  286. m_delay4[_chnl] = 0.0f;
  287. }
  288. }
  289. inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
  290. {
  291. sample_t out;
  292. switch( m_type )
  293. {
  294. case Moog:
  295. {
  296. sample_t x = _in0 - m_r*m_y4[_chnl];
  297. // four cascaded onepole filters
  298. // (bilinear transform)
  299. m_y1[_chnl] = qBound( -10.0f,
  300. ( x + m_oldx[_chnl] ) * m_p
  301. - m_k * m_y1[_chnl],
  302. 10.0f );
  303. m_y2[_chnl] = qBound( -10.0f,
  304. ( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
  305. - m_k * m_y2[_chnl],
  306. 10.0f );
  307. m_y3[_chnl] = qBound( -10.0f,
  308. ( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
  309. - m_k * m_y3[_chnl],
  310. 10.0f );
  311. m_y4[_chnl] = qBound( -10.0f,
  312. ( m_y3[_chnl] + m_oldy3[_chnl] ) * m_p
  313. - m_k * m_y4[_chnl],
  314. 10.0f );
  315. m_oldx[_chnl] = x;
  316. m_oldy1[_chnl] = m_y1[_chnl];
  317. m_oldy2[_chnl] = m_y2[_chnl];
  318. m_oldy3[_chnl] = m_y3[_chnl];
  319. out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
  320. m_y4[_chnl] * ( 1.0f / 6.0f );
  321. break;
  322. }
  323. // 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
  324. // input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
  325. case Tripole:
  326. {
  327. out = 0.0f;
  328. float ip = 0.0f;
  329. for( int i = 0; i < 4; ++i )
  330. {
  331. ip += 0.25f;
  332. sample_t x = linearInterpolate( m_last[_chnl], _in0, ip ) - m_r * m_y3[_chnl];
  333. m_y1[_chnl] = qBound( -10.0f,
  334. ( x + m_oldx[_chnl] ) * m_p
  335. - m_k * m_y1[_chnl],
  336. 10.0f );
  337. m_y2[_chnl] = qBound( -10.0f,
  338. ( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
  339. - m_k * m_y2[_chnl],
  340. 10.0f );
  341. m_y3[_chnl] = qBound( -10.0f,
  342. ( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
  343. - m_k * m_y3[_chnl],
  344. 10.0f );
  345. m_oldx[_chnl] = x;
  346. m_oldy1[_chnl] = m_y1[_chnl];
  347. m_oldy2[_chnl] = m_y2[_chnl];
  348. out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
  349. }
  350. out *= 0.25f;
  351. m_last[_chnl] = _in0;
  352. return out;
  353. }
  354. // 4-pole state-variant lowpass filter, adapted from Nekobee source code
  355. // and extended to other SV filter types
  356. // /* Hal Chamberlin's state variable filter */
  357. case Lowpass_SV:
  358. case Bandpass_SV:
  359. {
  360. float highpass;
  361. for( int i = 0; i < 2; ++i ) // 2x oversample
  362. {
  363. m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
  364. highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
  365. m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
  366. m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
  367. highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
  368. m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
  369. }
  370. /* mix filter output into output buffer */
  371. return m_type == Lowpass_SV
  372. ? m_delay4[_chnl]
  373. : m_delay3[_chnl];
  374. }
  375. case Highpass_SV:
  376. {
  377. float hp;
  378. for( int i = 0; i < 2; ++i ) // 2x oversample
  379. {
  380. m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
  381. hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
  382. m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
  383. }
  384. return hp;
  385. }
  386. case Notch_SV:
  387. {
  388. float hp1, hp2;
  389. for( int i = 0; i < 2; ++i ) // 2x oversample
  390. {
  391. m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
  392. hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
  393. m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
  394. m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
  395. hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
  396. m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
  397. }
  398. /* mix filter output into output buffer */
  399. return m_delay4[_chnl] + hp1;
  400. }
  401. // 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
  402. // Filter-Network as it was used in nearly all modern analog synthesizers. This
  403. // can be driven up to self-oscillation (BTW: do not remove the limits!!!).
  404. // (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
  405. case Lowpass_RC12:
  406. {
  407. sample_t lp, bp, hp, in;
  408. for( int n = 4; n != 0; --n )
  409. {
  410. in = _in0 + m_rcbp0[_chnl] * m_rcq;
  411. in = qBound( -1.0f, in, 1.0f );
  412. lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
  413. lp = qBound( -1.0f, lp, 1.0f );
  414. hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
  415. hp = qBound( -1.0f, hp, 1.0f );
  416. bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
  417. bp = qBound( -1.0f, bp, 1.0f );
  418. m_rclast0[_chnl] = in;
  419. m_rclp0[_chnl] = lp;
  420. m_rchp0[_chnl] = hp;
  421. m_rcbp0[_chnl] = bp;
  422. }
  423. return lp;
  424. }
  425. case Highpass_RC12:
  426. case Bandpass_RC12:
  427. {
  428. sample_t hp, bp, in;
  429. for( int n = 4; n != 0; --n )
  430. {
  431. in = _in0 + m_rcbp0[_chnl] * m_rcq;
  432. in = qBound( -1.0f, in, 1.0f );
  433. hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
  434. hp = qBound( -1.0f, hp, 1.0f );
  435. bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
  436. bp = qBound( -1.0f, bp, 1.0f );
  437. m_rclast0[_chnl] = in;
  438. m_rchp0[_chnl] = hp;
  439. m_rcbp0[_chnl] = bp;
  440. }
  441. return m_type == Highpass_RC12 ? hp : bp;
  442. }
  443. case Lowpass_RC24:
  444. {
  445. sample_t lp, bp, hp, in;
  446. for( int n = 4; n != 0; --n )
  447. {
  448. // first stage is as for the 12dB case...
  449. in = _in0 + m_rcbp0[_chnl] * m_rcq;
  450. in = qBound( -1.0f, in, 1.0f );
  451. lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
  452. lp = qBound( -1.0f, lp, 1.0f );
  453. hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
  454. hp = qBound( -1.0f, hp, 1.0f );
  455. bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
  456. bp = qBound( -1.0f, bp, 1.0f );
  457. m_rclast0[_chnl] = in;
  458. m_rclp0[_chnl] = lp;
  459. m_rcbp0[_chnl] = bp;
  460. m_rchp0[_chnl] = hp;
  461. // second stage gets the output of the first stage as input...
  462. in = lp + m_rcbp1[_chnl] * m_rcq;
  463. in = qBound( -1.0f, in, 1.0f );
  464. lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
  465. lp = qBound( -1.0f, lp, 1.0f );
  466. hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
  467. hp = qBound( -1.0f, hp, 1.0f );
  468. bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
  469. bp = qBound( -1.0f, bp, 1.0f );
  470. m_rclast1[_chnl] = in;
  471. m_rclp1[_chnl] = lp;
  472. m_rcbp1[_chnl] = bp;
  473. m_rchp1[_chnl] = hp;
  474. }
  475. return lp;
  476. }
  477. case Highpass_RC24:
  478. case Bandpass_RC24:
  479. {
  480. sample_t hp, bp, in;
  481. for( int n = 4; n != 0; --n )
  482. {
  483. // first stage is as for the 12dB case...
  484. in = _in0 + m_rcbp0[_chnl] * m_rcq;
  485. in = qBound( -1.0f, in, 1.0f );
  486. hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
  487. hp = qBound( -1.0f, hp, 1.0f );
  488. bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
  489. bp = qBound( -1.0f, bp, 1.0f );
  490. m_rclast0[_chnl] = in;
  491. m_rchp0[_chnl] = hp;
  492. m_rcbp0[_chnl] = bp;
  493. // second stage gets the output of the first stage as input...
  494. in = m_type == Highpass_RC24
  495. ? hp + m_rcbp1[_chnl] * m_rcq
  496. : bp + m_rcbp1[_chnl] * m_rcq;
  497. in = qBound( -1.0f, in, 1.0f );
  498. hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
  499. hp = qBound( -1.0f, hp, 1.0f );
  500. bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
  501. bp = qBound( -1.0f, bp, 1.0f );
  502. m_rclast1[_chnl] = in;
  503. m_rchp1[_chnl] = hp;
  504. m_rcbp1[_chnl] = bp;
  505. }
  506. return m_type == Highpass_RC24 ? hp : bp;
  507. }
  508. case Formantfilter:
  509. case FastFormant:
  510. {
  511. if( qAbs( _in0 ) < 1.0e-10f && qAbs( m_vflast[0][_chnl] ) < 1.0e-10f ) { return 0.0f; } // performance hack - skip processing when the numbers get too small
  512. sample_t hp, bp, in;
  513. out = 0;
  514. const int os = m_type == FastFormant ? 1 : 4; // no oversampling for fast formant
  515. for( int o = 0; o < os; ++o )
  516. {
  517. // first formant
  518. in = _in0 + m_vfbp[0][_chnl] * m_vfq;
  519. in = qBound( -1.0f, in, 1.0f );
  520. hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
  521. hp = qBound( -1.0f, hp, 1.0f );
  522. bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
  523. bp = qBound( -1.0f, bp, 1.0f );
  524. m_vflast[0][_chnl] = in;
  525. m_vfhp[0][_chnl] = hp;
  526. m_vfbp[0][_chnl] = bp;
  527. in = bp + m_vfbp[2][_chnl] * m_vfq;
  528. in = qBound( -1.0f, in, 1.0f );
  529. hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
  530. hp = qBound( -1.0f, hp, 1.0f );
  531. bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
  532. bp = qBound( -1.0f, bp, 1.0f );
  533. m_vflast[2][_chnl] = in;
  534. m_vfhp[2][_chnl] = hp;
  535. m_vfbp[2][_chnl] = bp;
  536. in = bp + m_vfbp[4][_chnl] * m_vfq;
  537. in = qBound( -1.0f, in, 1.0f );
  538. hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
  539. hp = qBound( -1.0f, hp, 1.0f );
  540. bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
  541. bp = qBound( -1.0f, bp, 1.0f );
  542. m_vflast[4][_chnl] = in;
  543. m_vfhp[4][_chnl] = hp;
  544. m_vfbp[4][_chnl] = bp;
  545. out += bp;
  546. // second formant
  547. in = _in0 + m_vfbp[0][_chnl] * m_vfq;
  548. in = qBound( -1.0f, in, 1.0f );
  549. hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
  550. hp = qBound( -1.0f, hp, 1.0f );
  551. bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
  552. bp = qBound( -1.0f, bp, 1.0f );
  553. m_vflast[1][_chnl] = in;
  554. m_vfhp[1][_chnl] = hp;
  555. m_vfbp[1][_chnl] = bp;
  556. in = bp + m_vfbp[3][_chnl] * m_vfq;
  557. in = qBound( -1.0f, in, 1.0f );
  558. hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
  559. hp = qBound( -1.0f, hp, 1.0f );
  560. bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
  561. bp = qBound( -1.0f, bp, 1.0f );
  562. m_vflast[3][_chnl] = in;
  563. m_vfhp[3][_chnl] = hp;
  564. m_vfbp[3][_chnl] = bp;
  565. in = bp + m_vfbp[5][_chnl] * m_vfq;
  566. in = qBound( -1.0f, in, 1.0f );
  567. hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
  568. hp = qBound( -1.0f, hp, 1.0f );
  569. bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
  570. bp = qBound( -1.0f, bp, 1.0f );
  571. m_vflast[5][_chnl] = in;
  572. m_vfhp[5][_chnl] = hp;
  573. m_vfbp[5][_chnl] = bp;
  574. out += bp;
  575. }
  576. return m_type == FastFormant ? out * 2.0f : out * 0.5f;
  577. }
  578. default:
  579. out = m_biQuad.update( _in0, _chnl );
  580. break;
  581. }
  582. if( m_doubleFilter )
  583. {
  584. return m_subFilter->update( out, _chnl );
  585. }
  586. // Clipper band limited sigmoid
  587. return out;
  588. }
  589. inline void calcFilterCoeffs( float _freq, float _q )
  590. {
  591. // temp coef vars
  592. _q = qMax( _q, minQ() );
  593. if( m_type == Lowpass_RC12 ||
  594. m_type == Bandpass_RC12 ||
  595. m_type == Highpass_RC12 ||
  596. m_type == Lowpass_RC24 ||
  597. m_type == Bandpass_RC24 ||
  598. m_type == Highpass_RC24 )
  599. {
  600. _freq = qBound( 50.0f, _freq, 20000.0f );
  601. const float sr = m_sampleRatio * 0.25f;
  602. const float f = 1.0f / ( _freq * F_2PI );
  603. m_rca = 1.0f - sr / ( f + sr );
  604. m_rcb = 1.0f - m_rca;
  605. m_rcc = f / ( f + sr );
  606. // Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
  607. m_rcq = _q * 0.25f;
  608. return;
  609. }
  610. if( m_type == Formantfilter ||
  611. m_type == FastFormant )
  612. {
  613. _freq = qBound( minFreq(), _freq, 20000.0f ); // limit freq and q for not getting bad noise out of the filter...
  614. // formats for a, e, i, o, u, a
  615. static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
  616. { 320, 3200 },
  617. { 500, 1000 },
  618. { 320, 800 },
  619. { 1000, 1400 } };
  620. static const float freqRatio = 4.0f / 14000.0f;
  621. // Stretch Q/resonance
  622. m_vfq = _q * 0.25f;
  623. // frequency in lmms ranges from 1Hz to 14000Hz
  624. const float vowelf = _freq * freqRatio;
  625. const int vowel = static_cast<int>( vowelf );
  626. const float fract = vowelf - vowel;
  627. // interpolate between formant frequencies
  628. const float f0 = 1.0f / ( linearInterpolate( _f[vowel+0][0], _f[vowel+1][0], fract ) * F_2PI );
  629. const float f1 = 1.0f / ( linearInterpolate( _f[vowel+0][1], _f[vowel+1][1], fract ) * F_2PI );
  630. // samplerate coeff: depends on oversampling
  631. const float sr = m_type == FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
  632. m_vfa[0] = 1.0f - sr / ( f0 + sr );
  633. m_vfb[0] = 1.0f - m_vfa[0];
  634. m_vfc[0] = f0 / ( f0 + sr );
  635. m_vfa[1] = 1.0f - sr / ( f1 + sr );
  636. m_vfb[1] = 1.0f - m_vfa[1];
  637. m_vfc[1] = f1 / ( f1 + sr );
  638. return;
  639. }
  640. if( m_type == Moog ||
  641. m_type == DoubleMoog )
  642. {
  643. // [ 0 - 0.5 ]
  644. const float f = qBound( minFreq(), _freq, 20000.0f ) * m_sampleRatio;
  645. // (Empirical tunning)
  646. m_p = ( 3.6f - 3.2f * f ) * f;
  647. m_k = 2.0f * m_p - 1;
  648. m_r = _q * powf( F_E, ( 1 - m_p ) * 1.386249f );
  649. if( m_doubleFilter )
  650. {
  651. m_subFilter->m_r = m_r;
  652. m_subFilter->m_p = m_p;
  653. m_subFilter->m_k = m_k;
  654. }
  655. return;
  656. }
  657. if( m_type == Tripole )
  658. {
  659. const float f = qBound( 20.0f, _freq, 20000.0f ) * m_sampleRatio * 0.25f;
  660. m_p = ( 3.6f - 3.2f * f ) * f;
  661. m_k = 2.0f * m_p - 1.0f;
  662. m_r = _q * 0.1f * powf( F_E, ( 1 - m_p ) * 1.386249f );
  663. return;
  664. }
  665. if( m_type == Lowpass_SV ||
  666. m_type == Bandpass_SV ||
  667. m_type == Highpass_SV ||
  668. m_type == Notch_SV )
  669. {
  670. const float f = sinf( qMax( minFreq(), _freq ) * m_sampleRatio * F_PI );
  671. m_svf1 = qMin( f, 0.825f );
  672. m_svf2 = qMin( f * 2.0f, 0.825f );
  673. m_svq = qMax( 0.0001f, 2.0f - ( _q * 0.1995f ) );
  674. return;
  675. }
  676. // other filters
  677. _freq = qBound( minFreq(), _freq, 20000.0f );
  678. const float omega = F_2PI * _freq * m_sampleRatio;
  679. const float tsin = sinf( omega ) * 0.5f;
  680. const float tcos = cosf( omega );
  681. const float alpha = tsin / _q;
  682. const float a0 = 1.0f / ( 1.0f + alpha );
  683. const float a1 = -2.0f * tcos * a0;
  684. const float a2 = ( 1.0f - alpha ) * a0;
  685. switch( m_type )
  686. {
  687. case LowPass:
  688. {
  689. const float b1 = ( 1.0f - tcos ) * a0;
  690. const float b0 = b1 * 0.5f;
  691. m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
  692. break;
  693. }
  694. case HiPass:
  695. {
  696. const float b1 = ( -1.0f - tcos ) * a0;
  697. const float b0 = b1 * -0.5f;
  698. m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
  699. break;
  700. }
  701. case BandPass_CSG:
  702. {
  703. const float b0 = tsin * a0;
  704. m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
  705. break;
  706. }
  707. case BandPass_CZPG:
  708. {
  709. const float b0 = alpha * a0;
  710. m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
  711. break;
  712. }
  713. case Notch:
  714. {
  715. m_biQuad.setCoeffs( a1, a2, a0, a1, a0 );
  716. break;
  717. }
  718. case AllPass:
  719. {
  720. m_biQuad.setCoeffs( a1, a2, a2, a1, 1.0f );
  721. break;
  722. }
  723. default:
  724. break;
  725. }
  726. if( m_doubleFilter )
  727. {
  728. m_subFilter->m_biQuad.setCoeffs( m_biQuad.m_a1, m_biQuad.m_a2, m_biQuad.m_b0, m_biQuad.m_b1, m_biQuad.m_b2 );
  729. }
  730. }
  731. private:
  732. // biquad filter
  733. BiQuad<CHANNELS> m_biQuad;
  734. // coeffs for moog-filter
  735. float m_r, m_p, m_k;
  736. // coeffs for RC-type-filters
  737. float m_rca, m_rcb, m_rcc, m_rcq;
  738. // coeffs for formant-filters
  739. float m_vfa[4], m_vfb[4], m_vfc[4], m_vfq;
  740. // coeffs for Lowpass_SV (state-variant lowpass)
  741. float m_svf1, m_svf2, m_svq;
  742. typedef sample_t frame[CHANNELS];
  743. // in/out history for moog-filter
  744. frame m_y1, m_y2, m_y3, m_y4, m_oldx, m_oldy1, m_oldy2, m_oldy3;
  745. // additional one for Tripole filter
  746. frame m_last;
  747. // in/out history for RC-type-filters
  748. frame m_rcbp0, m_rclp0, m_rchp0, m_rclast0;
  749. frame m_rcbp1, m_rclp1, m_rchp1, m_rclast1;
  750. // in/out history for Formant-filters
  751. frame m_vfbp[6], m_vfhp[6], m_vflast[6];
  752. // in/out history for Lowpass_SV (state-variant lowpass)
  753. frame m_delay1, m_delay2, m_delay3, m_delay4;
  754. FilterTypes m_type;
  755. bool m_doubleFilter;
  756. float m_sampleRate;
  757. float m_sampleRatio;
  758. BasicFilters<CHANNELS> * m_subFilter;
  759. } ;
  760. #endif