123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918 |
- /*
- * BasicFilters.h - simple but powerful filter-class with most used filters
- *
- * original file by ???
- * modified and enhanced by Tobias Doerffel
- *
- * Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
- * adapted & modified for use in LMMS
- *
- * Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
- *
- * This file is part of LMMS - https://lmms.io
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with this program (see COPYING); if not, write to the
- * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
- * Boston, MA 02110-1301 USA.
- *
- */
- #ifndef BASIC_FILTERS_H
- #define BASIC_FILTERS_H
- #ifndef __USE_XOPEN
- #define __USE_XOPEN
- #endif
- #include <math.h>
- #include "lmms_basics.h"
- #include "templates.h"
- #include "lmms_constants.h"
- #include "interpolation.h"
- #include "MemoryManager.h"
- template<ch_cnt_t CHANNELS> class BasicFilters;
- template<ch_cnt_t CHANNELS>
- class LinkwitzRiley
- {
- MM_OPERATORS
- public:
- LinkwitzRiley( float sampleRate )
- {
- m_sampleRate = sampleRate;
- clearHistory();
- }
- virtual ~LinkwitzRiley() {}
- inline void clearHistory()
- {
- for( int i = 0; i < CHANNELS; ++i )
- {
- m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
- }
- }
- inline void setSampleRate( float sampleRate )
- {
- m_sampleRate = sampleRate;
- }
- inline void setCoeffs( float freq )
- {
- // wc
- const double wc = D_2PI * freq;
- const double wc2 = wc * wc;
- const double wc3 = wc2 * wc;
- m_wc4 = wc2 * wc2;
- // k
- const double k = wc / tan( D_PI * freq / m_sampleRate );
- const double k2 = k * k;
- const double k3 = k2 * k;
- m_k4 = k2 * k2;
- // a
- static const double sqrt2 = sqrt( 2.0 );
- const double sq_tmp1 = sqrt2 * wc3 * k;
- const double sq_tmp2 = sqrt2 * wc * k3;
- m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
- // b
- m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
- m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
- m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
- m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
- }
- inline void setLowpass( float freq )
- {
- setCoeffs( freq );
- m_a0 = m_wc4 * m_a;
- m_a1 = 4.0 * m_a0;
- m_a2 = 6.0 * m_a0;
- }
-
- inline void setHighpass( float freq )
- {
- setCoeffs( freq );
- m_a0 = m_k4 * m_a;
- m_a1 = -4.0 * m_a0;
- m_a2 = 6.0 * m_a0;
- }
- inline float update( float in, ch_cnt_t ch )
- {
- const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
- ( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
- const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
- ( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
- m_z4[ch] = m_z3[ch];
- m_z3[ch] = m_z2[ch];
- m_z2[ch] = m_z1[ch];
- m_z1[ch] = x;
-
- return y;
- }
- private:
- float m_sampleRate;
- double m_wc4;
- double m_k4;
- double m_a, m_a0, m_a1, m_a2;
- double m_b1, m_b2, m_b3, m_b4;
-
- typedef double frame[CHANNELS];
- frame m_z1, m_z2, m_z3, m_z4;
- };
- typedef LinkwitzRiley<2> StereoLinkwitzRiley;
- template<ch_cnt_t CHANNELS>
- class BiQuad
- {
- MM_OPERATORS
- public:
- BiQuad()
- {
- clearHistory();
- }
- virtual ~BiQuad() {}
-
- inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
- {
- m_a1 = a1;
- m_a2 = a2;
- m_b0 = b0;
- m_b1 = b1;
- m_b2 = b2;
- }
- inline void clearHistory()
- {
- for( int i = 0; i < CHANNELS; ++i )
- {
- m_z1[i] = 0.0f;
- m_z2[i] = 0.0f;
- }
- }
- inline float update( float in, ch_cnt_t ch )
- {
- // biquad filter in transposed form
- const float out = m_z1[ch] + m_b0 * in;
- m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
- m_z2[ch] = m_b2 * in - m_a2 * out;
- return out;
- }
- private:
- float m_a1, m_a2, m_b0, m_b1, m_b2;
- float m_z1 [CHANNELS], m_z2 [CHANNELS];
-
- friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
- };
- typedef BiQuad<2> StereoBiQuad;
- template<ch_cnt_t CHANNELS>
- class OnePole
- {
- MM_OPERATORS
- public:
- OnePole()
- {
- m_a0 = 1.0;
- m_b1 = 0.0;
- for( int i = 0; i < CHANNELS; ++i )
- {
- m_z1[i] = 0.0;
- }
- }
- virtual ~OnePole() {}
-
- inline void setCoeffs( float a0, float b1 )
- {
- m_a0 = a0;
- m_b1 = b1;
- }
-
- inline float update( float s, ch_cnt_t ch )
- {
- if( qAbs( s ) < 1.0e-10f && qAbs( m_z1[ch] ) < 1.0e-10f ) return 0.0f;
- return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
- }
-
- private:
- float m_a0, m_b1;
- float m_z1 [CHANNELS];
- };
- typedef OnePole<2> StereoOnePole;
- template<ch_cnt_t CHANNELS>
- class BasicFilters
- {
- MM_OPERATORS
- public:
- enum FilterTypes
- {
- LowPass,
- HiPass,
- BandPass_CSG,
- BandPass_CZPG,
- Notch,
- AllPass,
- Moog,
- DoubleLowPass,
- Lowpass_RC12,
- Bandpass_RC12,
- Highpass_RC12,
- Lowpass_RC24,
- Bandpass_RC24,
- Highpass_RC24,
- Formantfilter,
- DoubleMoog,
- Lowpass_SV,
- Bandpass_SV,
- Highpass_SV,
- Notch_SV,
- FastFormant,
- Tripole,
- NumFilters
- };
- static inline float minFreq()
- {
- return( 5.0f );
- }
- static inline float minQ()
- {
- return( 0.01f );
- }
- inline void setFilterType( const int _idx )
- {
- m_doubleFilter = _idx == DoubleLowPass || _idx == DoubleMoog;
- if( !m_doubleFilter )
- {
- m_type = static_cast<FilterTypes>( _idx );
- return;
- }
- // Double lowpass mode, backwards-compat for the goofy
- // Add-NumFilters to signify doubleFilter stuff
- m_type = _idx == DoubleLowPass
- ? LowPass
- : Moog;
- if( m_subFilter == NULL )
- {
- m_subFilter = new BasicFilters<CHANNELS>(
- static_cast<sample_rate_t>(
- m_sampleRate ) );
- }
- m_subFilter->m_type = m_type;
- }
- inline BasicFilters( const sample_rate_t _sample_rate ) :
- m_doubleFilter( false ),
- m_sampleRate( (float) _sample_rate ),
- m_sampleRatio( 1.0f / m_sampleRate ),
- m_subFilter( NULL )
- {
- clearHistory();
- }
- inline ~BasicFilters()
- {
- delete m_subFilter;
- }
- inline void clearHistory()
- {
- // reset in/out history for biquads
- m_biQuad.clearHistory();
- // reset in/out history
- for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
- {
- // reset in/out history for moog-filter
- m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
- m_oldx[_chnl] = m_oldy1[_chnl] =
- m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
-
- // tripole
- m_last[_chnl] = 0.0f;
- // reset in/out history for RC-filters
- m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
- m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
- for(int i=0; i<6; i++)
- m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
-
- // reset in/out history for SV-filters
- m_delay1[_chnl] = 0.0f;
- m_delay2[_chnl] = 0.0f;
- m_delay3[_chnl] = 0.0f;
- m_delay4[_chnl] = 0.0f;
- }
- }
- inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
- {
- sample_t out;
- switch( m_type )
- {
- case Moog:
- {
- sample_t x = _in0 - m_r*m_y4[_chnl];
- // four cascaded onepole filters
- // (bilinear transform)
- m_y1[_chnl] = qBound( -10.0f,
- ( x + m_oldx[_chnl] ) * m_p
- - m_k * m_y1[_chnl],
- 10.0f );
- m_y2[_chnl] = qBound( -10.0f,
- ( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
- - m_k * m_y2[_chnl],
- 10.0f );
- m_y3[_chnl] = qBound( -10.0f,
- ( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
- - m_k * m_y3[_chnl],
- 10.0f );
- m_y4[_chnl] = qBound( -10.0f,
- ( m_y3[_chnl] + m_oldy3[_chnl] ) * m_p
- - m_k * m_y4[_chnl],
- 10.0f );
- m_oldx[_chnl] = x;
- m_oldy1[_chnl] = m_y1[_chnl];
- m_oldy2[_chnl] = m_y2[_chnl];
- m_oldy3[_chnl] = m_y3[_chnl];
- out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
- m_y4[_chnl] * ( 1.0f / 6.0f );
- break;
- }
-
- // 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
- // input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
- case Tripole:
- {
- out = 0.0f;
- float ip = 0.0f;
- for( int i = 0; i < 4; ++i )
- {
- ip += 0.25f;
- sample_t x = linearInterpolate( m_last[_chnl], _in0, ip ) - m_r * m_y3[_chnl];
-
- m_y1[_chnl] = qBound( -10.0f,
- ( x + m_oldx[_chnl] ) * m_p
- - m_k * m_y1[_chnl],
- 10.0f );
- m_y2[_chnl] = qBound( -10.0f,
- ( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
- - m_k * m_y2[_chnl],
- 10.0f );
- m_y3[_chnl] = qBound( -10.0f,
- ( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
- - m_k * m_y3[_chnl],
- 10.0f );
- m_oldx[_chnl] = x;
- m_oldy1[_chnl] = m_y1[_chnl];
- m_oldy2[_chnl] = m_y2[_chnl];
-
- out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
- }
- out *= 0.25f;
- m_last[_chnl] = _in0;
- return out;
- }
-
- // 4-pole state-variant lowpass filter, adapted from Nekobee source code
- // and extended to other SV filter types
- // /* Hal Chamberlin's state variable filter */
-
- case Lowpass_SV:
- case Bandpass_SV:
- {
- float highpass;
-
- for( int i = 0; i < 2; ++i ) // 2x oversample
- {
- m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
- highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
- m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
- m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
- highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
- m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
- }
- /* mix filter output into output buffer */
- return m_type == Lowpass_SV
- ? m_delay4[_chnl]
- : m_delay3[_chnl];
- }
-
- case Highpass_SV:
- {
- float hp;
- for( int i = 0; i < 2; ++i ) // 2x oversample
- {
- m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
- hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
- m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
- }
-
- return hp;
- }
-
- case Notch_SV:
- {
- float hp1, hp2;
-
- for( int i = 0; i < 2; ++i ) // 2x oversample
- {
- m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
- hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
- m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
- m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
- hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
- m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
- }
- /* mix filter output into output buffer */
- return m_delay4[_chnl] + hp1;
- }
- // 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
- // Filter-Network as it was used in nearly all modern analog synthesizers. This
- // can be driven up to self-oscillation (BTW: do not remove the limits!!!).
- // (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
- case Lowpass_RC12:
- {
- sample_t lp, bp, hp, in;
- for( int n = 4; n != 0; --n )
- {
- in = _in0 + m_rcbp0[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
- lp = qBound( -1.0f, lp, 1.0f );
- hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast0[_chnl] = in;
- m_rclp0[_chnl] = lp;
- m_rchp0[_chnl] = hp;
- m_rcbp0[_chnl] = bp;
- }
- return lp;
- }
- case Highpass_RC12:
- case Bandpass_RC12:
- {
- sample_t hp, bp, in;
- for( int n = 4; n != 0; --n )
- {
- in = _in0 + m_rcbp0[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast0[_chnl] = in;
- m_rchp0[_chnl] = hp;
- m_rcbp0[_chnl] = bp;
- }
- return m_type == Highpass_RC12 ? hp : bp;
- }
- case Lowpass_RC24:
- {
- sample_t lp, bp, hp, in;
- for( int n = 4; n != 0; --n )
- {
- // first stage is as for the 12dB case...
- in = _in0 + m_rcbp0[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
- lp = qBound( -1.0f, lp, 1.0f );
- hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast0[_chnl] = in;
- m_rclp0[_chnl] = lp;
- m_rcbp0[_chnl] = bp;
- m_rchp0[_chnl] = hp;
- // second stage gets the output of the first stage as input...
- in = lp + m_rcbp1[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
- lp = qBound( -1.0f, lp, 1.0f );
- hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast1[_chnl] = in;
- m_rclp1[_chnl] = lp;
- m_rcbp1[_chnl] = bp;
- m_rchp1[_chnl] = hp;
- }
- return lp;
- }
- case Highpass_RC24:
- case Bandpass_RC24:
- {
- sample_t hp, bp, in;
- for( int n = 4; n != 0; --n )
- {
- // first stage is as for the 12dB case...
- in = _in0 + m_rcbp0[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast0[_chnl] = in;
- m_rchp0[_chnl] = hp;
- m_rcbp0[_chnl] = bp;
- // second stage gets the output of the first stage as input...
- in = m_type == Highpass_RC24
- ? hp + m_rcbp1[_chnl] * m_rcq
- : bp + m_rcbp1[_chnl] * m_rcq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
- bp = qBound( -1.0f, bp, 1.0f );
- m_rclast1[_chnl] = in;
- m_rchp1[_chnl] = hp;
- m_rcbp1[_chnl] = bp;
- }
- return m_type == Highpass_RC24 ? hp : bp;
- }
- case Formantfilter:
- case FastFormant:
- {
- if( qAbs( _in0 ) < 1.0e-10f && qAbs( m_vflast[0][_chnl] ) < 1.0e-10f ) { return 0.0f; } // performance hack - skip processing when the numbers get too small
- sample_t hp, bp, in;
- out = 0;
- const int os = m_type == FastFormant ? 1 : 4; // no oversampling for fast formant
- for( int o = 0; o < os; ++o )
- {
- // first formant
- in = _in0 + m_vfbp[0][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[0][_chnl] = in;
- m_vfhp[0][_chnl] = hp;
- m_vfbp[0][_chnl] = bp;
- in = bp + m_vfbp[2][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[2][_chnl] = in;
- m_vfhp[2][_chnl] = hp;
- m_vfbp[2][_chnl] = bp;
- in = bp + m_vfbp[4][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[4][_chnl] = in;
- m_vfhp[4][_chnl] = hp;
- m_vfbp[4][_chnl] = bp;
- out += bp;
- // second formant
- in = _in0 + m_vfbp[0][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[1][_chnl] = in;
- m_vfhp[1][_chnl] = hp;
- m_vfbp[1][_chnl] = bp;
- in = bp + m_vfbp[3][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[3][_chnl] = in;
- m_vfhp[3][_chnl] = hp;
- m_vfbp[3][_chnl] = bp;
- in = bp + m_vfbp[5][_chnl] * m_vfq;
- in = qBound( -1.0f, in, 1.0f );
- hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
- hp = qBound( -1.0f, hp, 1.0f );
- bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
- bp = qBound( -1.0f, bp, 1.0f );
- m_vflast[5][_chnl] = in;
- m_vfhp[5][_chnl] = hp;
- m_vfbp[5][_chnl] = bp;
- out += bp;
- }
- return m_type == FastFormant ? out * 2.0f : out * 0.5f;
- }
- default:
- out = m_biQuad.update( _in0, _chnl );
- break;
- }
- if( m_doubleFilter )
- {
- return m_subFilter->update( out, _chnl );
- }
- // Clipper band limited sigmoid
- return out;
- }
- inline void calcFilterCoeffs( float _freq, float _q )
- {
- // temp coef vars
- _q = qMax( _q, minQ() );
- if( m_type == Lowpass_RC12 ||
- m_type == Bandpass_RC12 ||
- m_type == Highpass_RC12 ||
- m_type == Lowpass_RC24 ||
- m_type == Bandpass_RC24 ||
- m_type == Highpass_RC24 )
- {
- _freq = qBound( 50.0f, _freq, 20000.0f );
- const float sr = m_sampleRatio * 0.25f;
- const float f = 1.0f / ( _freq * F_2PI );
-
- m_rca = 1.0f - sr / ( f + sr );
- m_rcb = 1.0f - m_rca;
- m_rcc = f / ( f + sr );
- // Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
- m_rcq = _q * 0.25f;
- return;
- }
- if( m_type == Formantfilter ||
- m_type == FastFormant )
- {
- _freq = qBound( minFreq(), _freq, 20000.0f ); // limit freq and q for not getting bad noise out of the filter...
- // formats for a, e, i, o, u, a
- static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
- { 320, 3200 },
- { 500, 1000 },
- { 320, 800 },
- { 1000, 1400 } };
- static const float freqRatio = 4.0f / 14000.0f;
- // Stretch Q/resonance
- m_vfq = _q * 0.25f;
- // frequency in lmms ranges from 1Hz to 14000Hz
- const float vowelf = _freq * freqRatio;
- const int vowel = static_cast<int>( vowelf );
- const float fract = vowelf - vowel;
- // interpolate between formant frequencies
- const float f0 = 1.0f / ( linearInterpolate( _f[vowel+0][0], _f[vowel+1][0], fract ) * F_2PI );
- const float f1 = 1.0f / ( linearInterpolate( _f[vowel+0][1], _f[vowel+1][1], fract ) * F_2PI );
- // samplerate coeff: depends on oversampling
- const float sr = m_type == FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
- m_vfa[0] = 1.0f - sr / ( f0 + sr );
- m_vfb[0] = 1.0f - m_vfa[0];
- m_vfc[0] = f0 / ( f0 + sr );
- m_vfa[1] = 1.0f - sr / ( f1 + sr );
- m_vfb[1] = 1.0f - m_vfa[1];
- m_vfc[1] = f1 / ( f1 + sr );
- return;
- }
- if( m_type == Moog ||
- m_type == DoubleMoog )
- {
- // [ 0 - 0.5 ]
- const float f = qBound( minFreq(), _freq, 20000.0f ) * m_sampleRatio;
- // (Empirical tunning)
- m_p = ( 3.6f - 3.2f * f ) * f;
- m_k = 2.0f * m_p - 1;
- m_r = _q * powf( F_E, ( 1 - m_p ) * 1.386249f );
- if( m_doubleFilter )
- {
- m_subFilter->m_r = m_r;
- m_subFilter->m_p = m_p;
- m_subFilter->m_k = m_k;
- }
- return;
- }
-
- if( m_type == Tripole )
- {
- const float f = qBound( 20.0f, _freq, 20000.0f ) * m_sampleRatio * 0.25f;
-
- m_p = ( 3.6f - 3.2f * f ) * f;
- m_k = 2.0f * m_p - 1.0f;
- m_r = _q * 0.1f * powf( F_E, ( 1 - m_p ) * 1.386249f );
-
- return;
- }
- if( m_type == Lowpass_SV ||
- m_type == Bandpass_SV ||
- m_type == Highpass_SV ||
- m_type == Notch_SV )
- {
- const float f = sinf( qMax( minFreq(), _freq ) * m_sampleRatio * F_PI );
- m_svf1 = qMin( f, 0.825f );
- m_svf2 = qMin( f * 2.0f, 0.825f );
- m_svq = qMax( 0.0001f, 2.0f - ( _q * 0.1995f ) );
- return;
- }
- // other filters
- _freq = qBound( minFreq(), _freq, 20000.0f );
- const float omega = F_2PI * _freq * m_sampleRatio;
- const float tsin = sinf( omega ) * 0.5f;
- const float tcos = cosf( omega );
- const float alpha = tsin / _q;
- const float a0 = 1.0f / ( 1.0f + alpha );
- const float a1 = -2.0f * tcos * a0;
- const float a2 = ( 1.0f - alpha ) * a0;
- switch( m_type )
- {
- case LowPass:
- {
- const float b1 = ( 1.0f - tcos ) * a0;
- const float b0 = b1 * 0.5f;
- m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
- break;
- }
- case HiPass:
- {
- const float b1 = ( -1.0f - tcos ) * a0;
- const float b0 = b1 * -0.5f;
- m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
- break;
- }
- case BandPass_CSG:
- {
- const float b0 = tsin * a0;
- m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
- break;
- }
- case BandPass_CZPG:
- {
- const float b0 = alpha * a0;
- m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
- break;
- }
- case Notch:
- {
- m_biQuad.setCoeffs( a1, a2, a0, a1, a0 );
- break;
- }
- case AllPass:
- {
- m_biQuad.setCoeffs( a1, a2, a2, a1, 1.0f );
- break;
- }
- default:
- break;
- }
- if( m_doubleFilter )
- {
- m_subFilter->m_biQuad.setCoeffs( m_biQuad.m_a1, m_biQuad.m_a2, m_biQuad.m_b0, m_biQuad.m_b1, m_biQuad.m_b2 );
- }
- }
- private:
- // biquad filter
- BiQuad<CHANNELS> m_biQuad;
- // coeffs for moog-filter
- float m_r, m_p, m_k;
- // coeffs for RC-type-filters
- float m_rca, m_rcb, m_rcc, m_rcq;
- // coeffs for formant-filters
- float m_vfa[4], m_vfb[4], m_vfc[4], m_vfq;
- // coeffs for Lowpass_SV (state-variant lowpass)
- float m_svf1, m_svf2, m_svq;
- typedef sample_t frame[CHANNELS];
- // in/out history for moog-filter
- frame m_y1, m_y2, m_y3, m_y4, m_oldx, m_oldy1, m_oldy2, m_oldy3;
- // additional one for Tripole filter
- frame m_last;
- // in/out history for RC-type-filters
- frame m_rcbp0, m_rclp0, m_rchp0, m_rclast0;
- frame m_rcbp1, m_rclp1, m_rchp1, m_rclast1;
- // in/out history for Formant-filters
- frame m_vfbp[6], m_vfhp[6], m_vflast[6];
- // in/out history for Lowpass_SV (state-variant lowpass)
- frame m_delay1, m_delay2, m_delay3, m_delay4;
- FilterTypes m_type;
- bool m_doubleFilter;
- float m_sampleRate;
- float m_sampleRatio;
- BasicFilters<CHANNELS> * m_subFilter;
- } ;
- #endif
|