123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- // ---------------------------------------------------------------------------
- // This file is part of reSID, a MOS6581 SID emulator engine.
- // Copyright (C) 2004 Dag Lem <resid@nimrod.no>
- //
- // This program is free software; you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation; either version 2 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program; if not, write to the Free Software
- // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- // ---------------------------------------------------------------------------
- #ifndef __EXTFILT_H__
- #define __EXTFILT_H__
- #include "siddefs.h"
- // ----------------------------------------------------------------------------
- // The audio output stage in a Commodore 64 consists of two STC networks,
- // a low-pass filter with 3-dB frequency 16kHz followed by a high-pass
- // filter with 3-dB frequency 16Hz (the latter provided an audio equipment
- // input impedance of 1kOhm).
- // The STC networks are connected with a BJT supposedly meant to act as
- // a unity gain buffer, which is not really how it works. A more elaborate
- // model would include the BJT, however DC circuit analysis yields BJT
- // base-emitter and emitter-base impedances sufficiently low to produce
- // additional low-pass and high-pass 3dB-frequencies in the order of hundreds
- // of kHz. This calls for a sampling frequency of several MHz, which is far
- // too high for practical use.
- // ----------------------------------------------------------------------------
- class ExternalFilter
- {
- public:
- ExternalFilter();
- void enable_filter(bool enable);
- void set_chip_model(chip_model model);
- RESID_INLINE void clock(sound_sample Vi);
- RESID_INLINE void clock(cycle_count delta_t, sound_sample Vi);
- void reset();
- // Audio output (20 bits).
- RESID_INLINE sound_sample output();
- protected:
- // Filter enabled.
- bool enabled;
- // Maximum mixer DC offset.
- sound_sample mixer_DC;
- // State of filters.
- sound_sample Vlp; // lowpass
- sound_sample Vhp; // highpass
- sound_sample Vo;
- // Cutoff frequencies.
- sound_sample w0lp;
- sound_sample w0hp;
- friend class cSID;
- };
- // ----------------------------------------------------------------------------
- // Inline functions.
- // The following functions are defined inline because they are called every
- // time a sample is calculated.
- // ----------------------------------------------------------------------------
- #if RESID_INLINING || defined(__EXTFILT_CC__)
- // ----------------------------------------------------------------------------
- // SID clocking - 1 cycle.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- void ExternalFilter::clock(sound_sample Vi)
- {
- // This is handy for testing.
- if (!enabled) {
- // Remove maximum DC level since there is no filter to do it.
- Vlp = Vhp = 0;
- Vo = Vi - mixer_DC;
- return;
- }
- // delta_t is converted to seconds given a 1MHz clock by dividing
- // with 1 000 000.
- // Calculate filter outputs.
- // Vo = Vlp - Vhp;
- // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
- // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
- sound_sample dVlp = (w0lp >> 8)*(Vi - Vlp) >> 12;
- sound_sample dVhp = w0hp*(Vlp - Vhp) >> 20;
- Vo = Vlp - Vhp;
- Vlp += dVlp;
- Vhp += dVhp;
- }
- // ----------------------------------------------------------------------------
- // SID clocking - delta_t cycles.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- void ExternalFilter::clock(cycle_count delta_t,
- sound_sample Vi)
- {
- // This is handy for testing.
- if (!enabled) {
- // Remove maximum DC level since there is no filter to do it.
- Vlp = Vhp = 0;
- Vo = Vi - mixer_DC;
- return;
- }
- // Maximum delta cycles for the external filter to work satisfactorily
- // is approximately 8.
- cycle_count delta_t_flt = 8;
- while (delta_t) {
- if (delta_t < delta_t_flt) {
- delta_t_flt = delta_t;
- }
- // delta_t is converted to seconds given a 1MHz clock by dividing
- // with 1 000 000.
- // Calculate filter outputs.
- // Vo = Vlp - Vhp;
- // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
- // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
- sound_sample dVlp = (w0lp*delta_t_flt >> 8)*(Vi - Vlp) >> 12;
- sound_sample dVhp = w0hp*delta_t_flt*(Vlp - Vhp) >> 20;
- Vo = Vlp - Vhp;
- Vlp += dVlp;
- Vhp += dVhp;
- delta_t -= delta_t_flt;
- }
- }
- // ----------------------------------------------------------------------------
- // Audio output (19.5 bits).
- // ----------------------------------------------------------------------------
- RESID_INLINE
- sound_sample ExternalFilter::output()
- {
- return Vo;
- }
- #endif // RESID_INLINING || defined(__EXTFILT_CC__)
- #endif // not __EXTFILT_H__
|