123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 |
- /* SaProcessor.cpp - implementation of SaProcessor class.
- *
- * Copyright (c) 2019 Martin Pavelek <he29/dot/HS/at/gmail/dot/com>
- *
- * Based partially on Eq plugin code,
- * Copyright (c) 2014-2017, David French <dave/dot/french3/at/googlemail/dot/com>
- *
- * This file is part of LMMS - https://lmms.io
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with this program (see COPYING); if not, write to the
- * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
- * Boston, MA 02110-1301 USA.
- *
- */
- #include "SaProcessor.h"
- #include <algorithm>
- #include <cmath>
- #include <iostream>
- #include <QMutexLocker>
- #include "lmms_math.h"
- SaProcessor::SaProcessor(SaControls *controls) :
- m_controls(controls),
- m_inBlockSize(FFT_BLOCK_SIZES[0]),
- m_fftBlockSize(FFT_BLOCK_SIZES[0]),
- m_sampleRate(Engine::mixer()->processingSampleRate()),
- m_framesFilledUp(0),
- m_spectrumActive(false),
- m_waterfallActive(false),
- m_waterfallNotEmpty(0),
- m_reallocating(false)
- {
- m_fftWindow.resize(m_inBlockSize, 1.0);
- precomputeWindow(m_fftWindow.data(), m_inBlockSize, BLACKMAN_HARRIS);
- m_bufferL.resize(m_fftBlockSize, 0);
- m_bufferR.resize(m_fftBlockSize, 0);
- m_spectrumL = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
- m_spectrumR = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
- m_fftPlanL = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
- m_fftPlanR = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
- m_absSpectrumL.resize(binCount(), 0);
- m_absSpectrumR.resize(binCount(), 0);
- m_normSpectrumL.resize(binCount(), 0);
- m_normSpectrumR.resize(binCount(), 0);
- m_history.resize(binCount() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
- clear();
- }
- SaProcessor::~SaProcessor()
- {
- if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
- if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
- if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
- if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
- m_fftPlanL = NULL;
- m_fftPlanR = NULL;
- m_spectrumL = NULL;
- m_spectrumR = NULL;
- }
- // Load a batch of data from LMMS; run FFT analysis if buffer is full enough.
- void SaProcessor::analyse(sampleFrame *in_buffer, const fpp_t frame_count)
- {
- #ifdef SA_DEBUG
- int start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count();
- #endif
- // only take in data if any view is visible and not paused
- if ((m_spectrumActive || m_waterfallActive) && !m_controls->m_pauseModel.value())
- {
- const bool stereo = m_controls->m_stereoModel.value();
- fpp_t in_frame = 0;
- while (in_frame < frame_count)
- {
- // fill sample buffers and check for zero input
- bool block_empty = true;
- for (; in_frame < frame_count && m_framesFilledUp < m_inBlockSize; in_frame++, m_framesFilledUp++)
- {
- if (stereo)
- {
- m_bufferL[m_framesFilledUp] = in_buffer[in_frame][0];
- m_bufferR[m_framesFilledUp] = in_buffer[in_frame][1];
- }
- else
- {
- m_bufferL[m_framesFilledUp] =
- m_bufferR[m_framesFilledUp] = (in_buffer[in_frame][0] + in_buffer[in_frame][1]) * 0.5f;
- }
- if (in_buffer[in_frame][0] != 0.f || in_buffer[in_frame][1] != 0.f)
- {
- block_empty = false;
- }
- }
-
- // Run analysis only if buffers contain enough data.
- // Also, to prevent audio interruption and a momentary GUI freeze,
- // skip analysis if buffers are being reallocated.
- if (m_framesFilledUp < m_inBlockSize || m_reallocating) {return;}
- // update sample rate
- m_sampleRate = Engine::mixer()->processingSampleRate();
-
- // apply FFT window
- for (unsigned int i = 0; i < m_inBlockSize; i++)
- {
- m_bufferL[i] = m_bufferL[i] * m_fftWindow[i];
- m_bufferR[i] = m_bufferR[i] * m_fftWindow[i];
- }
-
- // lock data shared with SaSpectrumView and SaWaterfallView
- QMutexLocker lock(&m_dataAccess);
- // Run FFT on left channel, convert the result to absolute magnitude
- // spectrum and normalize it.
- fftwf_execute(m_fftPlanL);
- absspec(m_spectrumL, m_absSpectrumL.data(), binCount());
- normalize(m_absSpectrumL, m_normSpectrumL, m_inBlockSize);
-
- // repeat analysis for right channel if stereo processing is enabled
- if (stereo)
- {
- fftwf_execute(m_fftPlanR);
- absspec(m_spectrumR, m_absSpectrumR.data(), binCount());
- normalize(m_absSpectrumR, m_normSpectrumR, m_inBlockSize);
- }
- // count empty lines so that empty history does not have to update
- if (block_empty && m_waterfallNotEmpty)
- {
- m_waterfallNotEmpty -= 1;
- }
- else if (!block_empty)
- {
- m_waterfallNotEmpty = m_waterfallHeight + 2;
- }
- if (m_waterfallActive && m_waterfallNotEmpty)
- {
- // move waterfall history one line down and clear the top line
- QRgb *pixel = (QRgb *)m_history.data();
- std::copy(pixel,
- pixel + binCount() * m_waterfallHeight - binCount(),
- pixel + binCount());
- memset(pixel, 0, binCount() * sizeof (QRgb));
- // add newest result on top
- int target; // pixel being constructed
- float accL = 0; // accumulators for merging multiple bins
- float accR = 0;
-
- for (unsigned int i = 0; i < binCount(); i++)
- {
- // Every frequency bin spans a frequency range that must be
- // partially or fully mapped to a pixel. Any inconsistency
- // may be seen in the spectrogram as dark or white lines --
- // play white noise to confirm your change did not break it.
- float band_start = freqToXPixel(binToFreq(i) - binBandwidth() / 2.0, binCount());
- float band_end = freqToXPixel(binToFreq(i + 1) - binBandwidth() / 2.0, binCount());
- if (m_controls->m_logXModel.value())
- {
- // Logarithmic scale
- if (band_end - band_start > 1.0)
- {
- // band spans multiple pixels: draw all pixels it covers
- for (target = (int)band_start; target < (int)band_end; target++)
- {
- if (target >= 0 && target < binCount())
- {
- pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
- }
- }
- // save remaining portion of the band for the following band / pixel
- // (in case the next band uses sub-pixel drawing)
- accL = (band_end - (int)band_end) * m_normSpectrumL[i];
- accR = (band_end - (int)band_end) * m_normSpectrumR[i];
- }
- else
- {
- // sub-pixel drawing; add contribution of current band
- target = (int)band_start;
- if ((int)band_start == (int)band_end)
- {
- // band ends within current target pixel, accumulate
- accL += (band_end - band_start) * m_normSpectrumL[i];
- accR += (band_end - band_start) * m_normSpectrumR[i];
- }
- else
- {
- // Band ends in the next pixel -- finalize the current pixel.
- // Make sure contribution is split correctly on pixel boundary.
- accL += ((int)band_end - band_start) * m_normSpectrumL[i];
- accR += ((int)band_end - band_start) * m_normSpectrumR[i];
-
- if (target >= 0 && target < binCount()) {pixel[target] = makePixel(accL, accR);}
- // save remaining portion of the band for the following band / pixel
- accL = (band_end - (int)band_end) * m_normSpectrumL[i];
- accR = (band_end - (int)band_end) * m_normSpectrumR[i];
- }
- }
- }
- else
- {
- // Linear: always draws one or more pixels per band
- for (target = (int)band_start; target < band_end; target++)
- {
- if (target >= 0 && target < binCount())
- {
- pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
- }
- }
- }
- }
- }
- #ifdef SA_DEBUG
- // report FFT processing speed
- start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count() - start_time;
- std::cout << "Processed " << m_framesFilledUp << " samples in " << start_time / 1000000.0 << " ms" << std::endl;
- #endif
- // clean up before checking for more data from input buffer
- m_framesFilledUp = 0;
- }
- }
- }
- // Produce a spectrogram pixel from normalized spectrum data.
- // Values over 1.0 will cause the color components to overflow: this is left
- // intentionally untreated as it clearly indicates which frequency is clipping.
- // Gamma correction is applied to make small values more visible and to make
- // a linear gradient actually appear roughly linear. The correction should be
- // around 0.42 to 0.45 for sRGB displays (or lower for bigger visibility boost).
- QRgb SaProcessor::makePixel(float left, float right, float gamma_correction) const
- {
- if (m_controls->m_stereoModel.value())
- {
- float ampL = pow(left, gamma_correction);
- float ampR = pow(right, gamma_correction);
- return qRgb(m_controls->m_colorL.red() * ampL + m_controls->m_colorR.red() * ampR,
- m_controls->m_colorL.green() * ampL + m_controls->m_colorR.green() * ampR,
- m_controls->m_colorL.blue() * ampL + m_controls->m_colorR.blue() * ampR);
- }
- else
- {
- float ampL = pow(left, gamma_correction);
- // make mono color brighter to compensate for the fact it is not summed
- return qRgb(m_controls->m_colorMono.lighter().red() * ampL,
- m_controls->m_colorMono.lighter().green() * ampL,
- m_controls->m_colorMono.lighter().blue() * ampL);
- }
- }
- // Inform the processor whether any display widgets actually need it.
- void SaProcessor::setSpectrumActive(bool active)
- {
- m_spectrumActive = active;
- }
- void SaProcessor::setWaterfallActive(bool active)
- {
- m_waterfallActive = active;
- }
- // Reallocate data buffers according to newly set block size.
- void SaProcessor::reallocateBuffers()
- {
- unsigned int new_size_index = m_controls->m_blockSizeModel.value();
- unsigned int new_in_size, new_fft_size;
- unsigned int new_bins;
- // get new block sizes and bin count based on selected index
- if (new_size_index < FFT_BLOCK_SIZES.size())
- {
- new_in_size = FFT_BLOCK_SIZES[new_size_index];
- }
- else
- {
- new_in_size = FFT_BLOCK_SIZES.back();
- }
- if (new_size_index + m_zeroPadFactor < FFT_BLOCK_SIZES.size())
- {
- new_fft_size = FFT_BLOCK_SIZES[new_size_index + m_zeroPadFactor];
- }
- else
- {
- new_fft_size = FFT_BLOCK_SIZES.back();
- }
- new_bins = new_fft_size / 2 +1;
- // Lock data shared with SaSpectrumView and SaWaterfallView.
- // The m_reallocating is here to tell analyse() to avoid asking for the
- // lock, since fftw3 can take a while to find the fastest FFT algorithm
- // for given machine, which would produce interruption in the audio stream.
- m_reallocating = true;
- QMutexLocker lock(&m_dataAccess);
- // destroy old FFT plan and free the result buffer
- if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
- if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
- if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
- if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
- // allocate new space, create new plan and resize containers
- m_fftWindow.resize(new_in_size, 1.0);
- precomputeWindow(m_fftWindow.data(), new_in_size, (FFT_WINDOWS) m_controls->m_windowModel.value());
- m_bufferL.resize(new_fft_size, 0);
- m_bufferR.resize(new_fft_size, 0);
- m_spectrumL = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
- m_spectrumR = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
- m_fftPlanL = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
- m_fftPlanR = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
- if (m_fftPlanL == NULL || m_fftPlanR == NULL)
- {
- std::cerr << "Failed to create new FFT plan!" << std::endl;
- }
- m_absSpectrumL.resize(new_bins, 0);
- m_absSpectrumR.resize(new_bins, 0);
- m_normSpectrumL.resize(new_bins, 0);
- m_normSpectrumR.resize(new_bins, 0);
- m_history.resize(new_bins * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
- // done; publish new sizes and clean up
- m_inBlockSize = new_in_size;
- m_fftBlockSize = new_fft_size;
- lock.unlock();
- m_reallocating = false;
- clear();
- }
- // Precompute a new FFT window based on currently selected type.
- void SaProcessor::rebuildWindow()
- {
- // computation is done in fft_helpers
- QMutexLocker lock(&m_dataAccess);
- precomputeWindow(m_fftWindow.data(), m_inBlockSize, (FFT_WINDOWS) m_controls->m_windowModel.value());
- }
- // Clear all data buffers and replace contents with zeros.
- // Note: may take a few milliseconds, do not call in a loop!
- void SaProcessor::clear()
- {
- QMutexLocker lock(&m_dataAccess);
- m_framesFilledUp = 0;
- std::fill(m_bufferL.begin(), m_bufferL.end(), 0);
- std::fill(m_bufferR.begin(), m_bufferR.end(), 0);
- std::fill(m_absSpectrumL.begin(), m_absSpectrumL.end(), 0);
- std::fill(m_absSpectrumR.begin(), m_absSpectrumR.end(), 0);
- std::fill(m_normSpectrumL.begin(), m_normSpectrumL.end(), 0);
- std::fill(m_normSpectrumR.begin(), m_normSpectrumR.end(), 0);
- std::fill(m_history.begin(), m_history.end(), 0);
- }
- // --------------------------------------
- // Frequency conversion helpers
- //
- // Get sample rate value that is valid for currently stored results.
- unsigned int SaProcessor::getSampleRate() const
- {
- return m_sampleRate;
- }
- // Maximum frequency of a sampled signal is equal to half of its sample rate.
- float SaProcessor::getNyquistFreq() const
- {
- return getSampleRate() / 2.0f;
- }
- // FFTW automatically discards upper half of the symmetric FFT output, so
- // the useful bin count is the transform size divided by 2, plus zero.
- unsigned int SaProcessor::binCount() const
- {
- return m_fftBlockSize / 2 + 1;
- }
- // Return the center frequency of given frequency bin.
- float SaProcessor::binToFreq(unsigned int bin_index) const
- {
- return getNyquistFreq() * bin_index / binCount();
- }
- // Return width of the frequency range that falls into one bin.
- // The binCount is lowered by one since half of the first and last bin is
- // actually outside the frequency range.
- float SaProcessor::binBandwidth() const
- {
- return getNyquistFreq() / (binCount() - 1);
- }
- float SaProcessor::getFreqRangeMin(bool linear) const
- {
- switch (m_controls->m_freqRangeModel.value())
- {
- case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_START;
- case FRANGE_BASS: return FRANGE_BASS_START;
- case FRANGE_MIDS: return FRANGE_MIDS_START;
- case FRANGE_HIGH: return FRANGE_HIGH_START;
- default:
- case FRANGE_FULL: return linear ? 0 : LOWEST_LOG_FREQ;
- }
- }
- float SaProcessor::getFreqRangeMax() const
- {
- switch (m_controls->m_freqRangeModel.value())
- {
- case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_END;
- case FRANGE_BASS: return FRANGE_BASS_END;
- case FRANGE_MIDS: return FRANGE_MIDS_END;
- case FRANGE_HIGH: return FRANGE_HIGH_END;
- default:
- case FRANGE_FULL: return getNyquistFreq();
- }
- }
- // Map frequency to pixel x position on a display of given width.
- float SaProcessor::freqToXPixel(float freq, unsigned int width) const
- {
- if (m_controls->m_logXModel.value())
- {
- if (freq <= 1) {return 0;}
- float min = log10(getFreqRangeMin());
- float range = log10(getFreqRangeMax()) - min;
- return (log10(freq) - min) / range * width;
- }
- else
- {
- float min = getFreqRangeMin();
- float range = getFreqRangeMax() - min;
- return (freq - min) / range * width;
- }
- }
- // Map pixel x position on display of given width back to frequency.
- float SaProcessor::xPixelToFreq(float x, unsigned int width) const
- {
- if (m_controls->m_logXModel.value())
- {
- float min = log10(getFreqRangeMin());
- float max = log10(getFreqRangeMax());
- float range = max - min;
- return pow(10, min + x / width * range);
- }
- else
- {
- float min = getFreqRangeMin();
- float range = getFreqRangeMax() - min;
- return min + x / width * range;
- }
- }
- // --------------------------------------
- // Amplitude conversion helpers
- //
- float SaProcessor::getAmpRangeMin(bool linear) const
- {
- // return very low limit to make sure zero gets included at linear grid
- if (linear) {return -900;}
- switch (m_controls->m_ampRangeModel.value())
- {
- case ARANGE_EXTENDED: return ARANGE_EXTENDED_START;
- case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_START;
- case ARANGE_NOISE: return ARANGE_NOISE_START;
- default:
- case ARANGE_DEFAULT: return ARANGE_DEFAULT_START;
- }
- }
- float SaProcessor::getAmpRangeMax() const
- {
- switch (m_controls->m_ampRangeModel.value())
- {
- case ARANGE_EXTENDED: return ARANGE_EXTENDED_END;
- case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_END;
- case ARANGE_NOISE: return ARANGE_NOISE_END;
- default:
- case ARANGE_DEFAULT: return ARANGE_DEFAULT_END;
- }
- }
- // Map linear amplitude to pixel y position on a display of given height.
- // Note that display coordinates are flipped: amplitude grows from [height] to zero.
- float SaProcessor::ampToYPixel(float amplitude, unsigned int height) const
- {
- if (m_controls->m_logYModel.value())
- {
- // logarithmic scale: convert linear amplitude to dB (relative to 1.0)
- float amplitude_dB = 10 * log10(amplitude);
- if (amplitude_dB < getAmpRangeMin())
- {
- return height;
- }
- else
- {
- float max = getAmpRangeMax();
- float range = getAmpRangeMin() - max;
- return (amplitude_dB - max) / range * height;
- }
- }
- else
- {
- // linear scale: convert returned ranges from dB to linear scale
- float max = pow(10, getAmpRangeMax() / 10);
- float range = pow(10, getAmpRangeMin() / 10) - max;
- return (amplitude - max) / range * height;
- }
- }
- // Map pixel y position on display of given height back to amplitude.
- // Note that display coordinates are flipped: amplitude grows from [height] to zero.
- // Also note that in logarithmic Y mode the returned amplitude is in dB, not linear.
- float SaProcessor::yPixelToAmp(float y, unsigned int height) const
- {
- if (m_controls->m_logYModel.value())
- {
- float max = getAmpRangeMax();
- float range = getAmpRangeMin() - max;
- return max + range * (y / height);
- }
- else
- {
- // linear scale: convert returned ranges from dB to linear scale
- float max = pow(10, getAmpRangeMax() / 10);
- float range = pow(10, getAmpRangeMin() / 10) - max;
- return max + range * (y / height);
- }
- }
|